利用深度学习技术评估全髋关节置换术视频中的阶段自动识别。

IF 1.9 2区 医学 Q2 ORTHOPEDICS
Clinics in Orthopedic Surgery Pub Date : 2024-04-01 Epub Date: 2024-03-15 DOI:10.4055/cios23280
Yang Jae Kang, Shin June Kim, Sung Hyo Seo, Sangyeob Lee, Hyeon Su Kim, Jun-Il Yoo
{"title":"利用深度学习技术评估全髋关节置换术视频中的阶段自动识别。","authors":"Yang Jae Kang, Shin June Kim, Sung Hyo Seo, Sangyeob Lee, Hyeon Su Kim, Jun-Il Yoo","doi":"10.4055/cios23280","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>As the population ages, the rates of hip diseases and fragility fractures are increasing, making total hip arthroplasty (THA) one of the best methods for treating elderly patients. With the increasing number of THA surgeries and diverse surgical methods, there is a need for standard evaluation protocols. This study aimed to use deep learning algorithms to classify THA videos and evaluate the accuracy of the labelling of these videos.</p><p><strong>Methods: </strong>In our study, we manually annotated 7 phases in THA, including skin incision, broaching, exposure of acetabulum, acetabular reaming, acetabular cup positioning, femoral stem insertion, and skin closure. Within each phase, a second trained annotator marked the beginning and end of instrument usages, such as the skin blade, forceps, Bovie, suction device, suture material, retractor, rasp, femoral stem, acetabular reamer, head trial, and real head.</p><p><strong>Results: </strong>In our study, we utilized YOLOv3 to collect 540 operating images of THA procedures and create a scene annotation model. The results of our study showed relatively high accuracy in the clear classification of surgical techniques such as skin incision and closure, broaching, acetabular reaming, and femoral stem insertion, with a mean average precision (mAP) of 0.75 or higher. Most of the equipment showed good accuracy of mAP 0.7 or higher, except for the suction device, suture material, and retractor.</p><p><strong>Conclusions: </strong>Scene annotation for the instrument and phases in THA using deep learning techniques may provide potentially useful tools for subsequent documentation, assessment of skills, and feedback.</p>","PeriodicalId":47648,"journal":{"name":"Clinics in Orthopedic Surgery","volume":"16 2","pages":"210-216"},"PeriodicalIF":1.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10973629/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assessment of Automated Identification of Phases in Videos of Total Hip Arthroplasty Using Deep Learning Techniques.\",\"authors\":\"Yang Jae Kang, Shin June Kim, Sung Hyo Seo, Sangyeob Lee, Hyeon Su Kim, Jun-Il Yoo\",\"doi\":\"10.4055/cios23280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>As the population ages, the rates of hip diseases and fragility fractures are increasing, making total hip arthroplasty (THA) one of the best methods for treating elderly patients. With the increasing number of THA surgeries and diverse surgical methods, there is a need for standard evaluation protocols. This study aimed to use deep learning algorithms to classify THA videos and evaluate the accuracy of the labelling of these videos.</p><p><strong>Methods: </strong>In our study, we manually annotated 7 phases in THA, including skin incision, broaching, exposure of acetabulum, acetabular reaming, acetabular cup positioning, femoral stem insertion, and skin closure. Within each phase, a second trained annotator marked the beginning and end of instrument usages, such as the skin blade, forceps, Bovie, suction device, suture material, retractor, rasp, femoral stem, acetabular reamer, head trial, and real head.</p><p><strong>Results: </strong>In our study, we utilized YOLOv3 to collect 540 operating images of THA procedures and create a scene annotation model. The results of our study showed relatively high accuracy in the clear classification of surgical techniques such as skin incision and closure, broaching, acetabular reaming, and femoral stem insertion, with a mean average precision (mAP) of 0.75 or higher. Most of the equipment showed good accuracy of mAP 0.7 or higher, except for the suction device, suture material, and retractor.</p><p><strong>Conclusions: </strong>Scene annotation for the instrument and phases in THA using deep learning techniques may provide potentially useful tools for subsequent documentation, assessment of skills, and feedback.</p>\",\"PeriodicalId\":47648,\"journal\":{\"name\":\"Clinics in Orthopedic Surgery\",\"volume\":\"16 2\",\"pages\":\"210-216\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10973629/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinics in Orthopedic Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4055/cios23280\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinics in Orthopedic Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4055/cios23280","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

摘要

背景:随着人口老龄化,髋关节疾病和脆性骨折的发病率不断上升,全髋关节置换术(THA)成为治疗老年患者的最佳方法之一。随着全髋关节置换手术数量的增加和手术方法的多样化,需要制定标准的评估方案。本研究旨在使用深度学习算法对 THA 视频进行分类,并评估这些视频标注的准确性:在我们的研究中,我们手动标注了 THA 的 7 个阶段,包括皮肤切口、拉刀、暴露髋臼、髋臼扩孔、髋臼杯定位、股骨干插入和皮肤闭合。在每个阶段中,由第二名训练有素的标注员标注器械使用的开始和结束,如皮肤刀、镊子、Bovie、吸引器、缝合材料、牵开器、铰刀、股骨干、髋臼铰刀、头试验和真头:在我们的研究中,我们利用 YOLOv3 收集了 540 张 THA 手术的操作图像,并创建了一个场景标注模型。研究结果表明,我们对皮肤切开和缝合、拉刀、髋臼扩孔和股骨干插入等手术技术进行清晰分类的准确率相对较高,平均精度(mAP)达到 0.75 或更高。除抽吸装置、缝合材料和牵开器外,大多数设备的平均精度都在 0.7 或以上:使用深度学习技术对 THA 中的器械和阶段进行场景注释可为后续记录、技能评估和反馈提供潜在的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of Automated Identification of Phases in Videos of Total Hip Arthroplasty Using Deep Learning Techniques.

Background: As the population ages, the rates of hip diseases and fragility fractures are increasing, making total hip arthroplasty (THA) one of the best methods for treating elderly patients. With the increasing number of THA surgeries and diverse surgical methods, there is a need for standard evaluation protocols. This study aimed to use deep learning algorithms to classify THA videos and evaluate the accuracy of the labelling of these videos.

Methods: In our study, we manually annotated 7 phases in THA, including skin incision, broaching, exposure of acetabulum, acetabular reaming, acetabular cup positioning, femoral stem insertion, and skin closure. Within each phase, a second trained annotator marked the beginning and end of instrument usages, such as the skin blade, forceps, Bovie, suction device, suture material, retractor, rasp, femoral stem, acetabular reamer, head trial, and real head.

Results: In our study, we utilized YOLOv3 to collect 540 operating images of THA procedures and create a scene annotation model. The results of our study showed relatively high accuracy in the clear classification of surgical techniques such as skin incision and closure, broaching, acetabular reaming, and femoral stem insertion, with a mean average precision (mAP) of 0.75 or higher. Most of the equipment showed good accuracy of mAP 0.7 or higher, except for the suction device, suture material, and retractor.

Conclusions: Scene annotation for the instrument and phases in THA using deep learning techniques may provide potentially useful tools for subsequent documentation, assessment of skills, and feedback.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
4.00%
发文量
85
审稿时长
36 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信