Hanieh Jahi, Mansoureh Eslami, Mohammad Sayyah, Fariba Karimzadeh, Melika Alesheikh
{"title":"姜黄素能降低创伤性脑损伤加速癫痫发生的速度","authors":"Hanieh Jahi, Mansoureh Eslami, Mohammad Sayyah, Fariba Karimzadeh, Melika Alesheikh","doi":"10.61186/ibj.3978","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Traumatic brain injury or TBI can underlie epilepsy. Prevention of PTE has been of great interest to scientists. Given the antiepileptic, antioxidant and anti-inflammatory activities of curcumin, we examined whether this compound can affect epileptogenesis in rats after TBI.</p><p><strong>Methods: </strong>Curcumin was injected once a day for two weeks. TBI was induced in the temporal cortex of anesthetized rats using a controlled cortical impact device. One day after TBI, pentylenetetrazole (PTZ), 35 mg/kg, was injected i.p. every other day until manifestation of generalized seizures. The number of PTZ injections was then recorded. Moreover, the extent of cortical and hippocampal IL-1β and glial fibrillary acidic protein (GFAP) expression in the epileptic rats were measured by Western blot analysis.</p><p><strong>Results: </strong>Curcumin 50 and 150 mg/kg prevented the development of kindling, whereas TBI accelerated the rate of kindling. Curcumin 20 mg/kg prohibited kindling facilitation by TBI, and reduced the expression of IL-1β and GFAP induced by TBI.</p><p><strong>Conclusion: </strong>Curcumin can stop the acceleration of epileptogenesis after TBI in rats. Inhibiting hippocampal and cortical overexpression of IL-1β and GFAP seems to be involved in this activity.</p>","PeriodicalId":14500,"journal":{"name":"Iranian Biomedical Journal","volume":" ","pages":"113-9"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11186616/pdf/","citationCount":"0","resultStr":"{\"title\":\"Curcumin Lowers the Accelerated Speed of Epileptogenesis by Traumatic Brain Injury.\",\"authors\":\"Hanieh Jahi, Mansoureh Eslami, Mohammad Sayyah, Fariba Karimzadeh, Melika Alesheikh\",\"doi\":\"10.61186/ibj.3978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Traumatic brain injury or TBI can underlie epilepsy. Prevention of PTE has been of great interest to scientists. Given the antiepileptic, antioxidant and anti-inflammatory activities of curcumin, we examined whether this compound can affect epileptogenesis in rats after TBI.</p><p><strong>Methods: </strong>Curcumin was injected once a day for two weeks. TBI was induced in the temporal cortex of anesthetized rats using a controlled cortical impact device. One day after TBI, pentylenetetrazole (PTZ), 35 mg/kg, was injected i.p. every other day until manifestation of generalized seizures. The number of PTZ injections was then recorded. Moreover, the extent of cortical and hippocampal IL-1β and glial fibrillary acidic protein (GFAP) expression in the epileptic rats were measured by Western blot analysis.</p><p><strong>Results: </strong>Curcumin 50 and 150 mg/kg prevented the development of kindling, whereas TBI accelerated the rate of kindling. Curcumin 20 mg/kg prohibited kindling facilitation by TBI, and reduced the expression of IL-1β and GFAP induced by TBI.</p><p><strong>Conclusion: </strong>Curcumin can stop the acceleration of epileptogenesis after TBI in rats. Inhibiting hippocampal and cortical overexpression of IL-1β and GFAP seems to be involved in this activity.</p>\",\"PeriodicalId\":14500,\"journal\":{\"name\":\"Iranian Biomedical Journal\",\"volume\":\" \",\"pages\":\"113-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11186616/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Biomedical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.61186/ibj.3978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Biomedical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61186/ibj.3978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Curcumin Lowers the Accelerated Speed of Epileptogenesis by Traumatic Brain Injury.
Background: Traumatic brain injury or TBI can underlie epilepsy. Prevention of PTE has been of great interest to scientists. Given the antiepileptic, antioxidant and anti-inflammatory activities of curcumin, we examined whether this compound can affect epileptogenesis in rats after TBI.
Methods: Curcumin was injected once a day for two weeks. TBI was induced in the temporal cortex of anesthetized rats using a controlled cortical impact device. One day after TBI, pentylenetetrazole (PTZ), 35 mg/kg, was injected i.p. every other day until manifestation of generalized seizures. The number of PTZ injections was then recorded. Moreover, the extent of cortical and hippocampal IL-1β and glial fibrillary acidic protein (GFAP) expression in the epileptic rats were measured by Western blot analysis.
Results: Curcumin 50 and 150 mg/kg prevented the development of kindling, whereas TBI accelerated the rate of kindling. Curcumin 20 mg/kg prohibited kindling facilitation by TBI, and reduced the expression of IL-1β and GFAP induced by TBI.
Conclusion: Curcumin can stop the acceleration of epileptogenesis after TBI in rats. Inhibiting hippocampal and cortical overexpression of IL-1β and GFAP seems to be involved in this activity.