{"title":"参与子痫前期发病的细胞外基质的研究进展。","authors":"Xin Wang, Qi Zhang, Yi Ren, Chao Liu, Huijie Gao","doi":"10.2174/0113892037284176240302052521","DOIUrl":null,"url":null,"abstract":"<p><p>Preeclampsia (PE) is a serious pregnancy complication, and its primary clinical manifestations are gestational hypertension and proteinuria. Trophoblasts are responsible for the basic functions of the placenta during placental development; recent studies have revealed that placental \"shallow implantation\" caused by the decreased invasiveness of placental trophoblasts plays a crucial role in PE pathogenesis. The interaction between the cells and the extracellular matrix (ECM) plays a crucial role in trophoblast proliferation, differentiation, and invasion. Abnormal ECM function can result in insufficient migration and invasion of placental trophoblasts, thus participating in PE. This article summarizes the recent studies on the involvement of ECM components, including small leucine-rich proteoglycans, syndecans, glypicans, laminins, fibronectin, collagen, and hyaluronic acid, in the development of PE. ECM plays various roles in PE development, most notably by controlling the activities of trophoblasts. The ECM is structurally stable and can serve as a biological diagnostic marker and therapeutic target for PE.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research Progress on Extracellular Matrix Involved in the Development of Preeclampsia.\",\"authors\":\"Xin Wang, Qi Zhang, Yi Ren, Chao Liu, Huijie Gao\",\"doi\":\"10.2174/0113892037284176240302052521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Preeclampsia (PE) is a serious pregnancy complication, and its primary clinical manifestations are gestational hypertension and proteinuria. Trophoblasts are responsible for the basic functions of the placenta during placental development; recent studies have revealed that placental \\\"shallow implantation\\\" caused by the decreased invasiveness of placental trophoblasts plays a crucial role in PE pathogenesis. The interaction between the cells and the extracellular matrix (ECM) plays a crucial role in trophoblast proliferation, differentiation, and invasion. Abnormal ECM function can result in insufficient migration and invasion of placental trophoblasts, thus participating in PE. This article summarizes the recent studies on the involvement of ECM components, including small leucine-rich proteoglycans, syndecans, glypicans, laminins, fibronectin, collagen, and hyaluronic acid, in the development of PE. ECM plays various roles in PE development, most notably by controlling the activities of trophoblasts. The ECM is structurally stable and can serve as a biological diagnostic marker and therapeutic target for PE.</p>\",\"PeriodicalId\":10859,\"journal\":{\"name\":\"Current protein & peptide science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protein & peptide science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892037284176240302052521\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protein & peptide science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0113892037284176240302052521","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
子痫前期(PE)是一种严重的妊娠并发症,其主要临床表现为妊娠高血压和蛋白尿。滋养细胞在胎盘发育过程中担负着胎盘的基本功能;最近的研究发现,胎盘滋养细胞侵袭力下降导致的胎盘 "浅植入 "在子痫前期发病机制中起着至关重要的作用。细胞与细胞外基质(ECM)之间的相互作用在滋养细胞的增殖、分化和侵袭过程中起着至关重要的作用。ECM 功能异常可导致胎盘滋养细胞迁移和侵袭不足,从而参与 PE 的发生。本文总结了有关 ECM 成分(包括富含亮氨酸的小蛋白聚糖、辛迪加、糖蛋白、层粘连蛋白、纤连蛋白、胶原蛋白和透明质酸)参与 PE 发病的最新研究。ECM 在 PE 发育过程中发挥着各种作用,其中最主要的是控制滋养细胞的活动。ECM 结构稳定,可作为 PE 的生物诊断标记和治疗靶点。
Research Progress on Extracellular Matrix Involved in the Development of Preeclampsia.
Preeclampsia (PE) is a serious pregnancy complication, and its primary clinical manifestations are gestational hypertension and proteinuria. Trophoblasts are responsible for the basic functions of the placenta during placental development; recent studies have revealed that placental "shallow implantation" caused by the decreased invasiveness of placental trophoblasts plays a crucial role in PE pathogenesis. The interaction between the cells and the extracellular matrix (ECM) plays a crucial role in trophoblast proliferation, differentiation, and invasion. Abnormal ECM function can result in insufficient migration and invasion of placental trophoblasts, thus participating in PE. This article summarizes the recent studies on the involvement of ECM components, including small leucine-rich proteoglycans, syndecans, glypicans, laminins, fibronectin, collagen, and hyaluronic acid, in the development of PE. ECM plays various roles in PE development, most notably by controlling the activities of trophoblasts. The ECM is structurally stable and can serve as a biological diagnostic marker and therapeutic target for PE.
期刊介绍:
Current Protein & Peptide Science publishes full-length/mini review articles on specific aspects involving proteins, peptides, and interactions between the enzymes, the binding interactions of hormones and their receptors; the properties of transcription factors and other molecules that regulate gene expression; the reactions leading to the immune response; the process of signal transduction; the structure and function of proteins involved in the cytoskeleton and molecular motors; the properties of membrane channels and transporters; and the generation and storage of metabolic energy. In addition, reviews of experimental studies of protein folding and design are given special emphasis. Manuscripts submitted to Current Protein and Peptide Science should cover a field by discussing research from the leading laboratories in a field and should pose questions for future studies. Original papers, research articles and letter articles/short communications are not considered for publication in Current Protein & Peptide Science.