用于癌症协同治疗的超分子配位复合物。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yang Li, Feihe Huang*, Peter J. Stang* and Shouchun Yin*, 
{"title":"用于癌症协同治疗的超分子配位复合物。","authors":"Yang Li,&nbsp;Feihe Huang*,&nbsp;Peter J. Stang* and Shouchun Yin*,&nbsp;","doi":"10.1021/acs.accounts.4c00031","DOIUrl":null,"url":null,"abstract":"<p >Supramolecular coordination complexes (SCCs) are predictable and size-tunable supramolecular self-assemblies constructed through directional coordination bonds between readily available organic ligands and metallic receptors. Based on planar and 3D structures, SCCs can be mainly divided into two categories: metallacycles (e.g., rhomboidal, triangular, rectangular, and hexagonal) and metallacages (e.g., tetrahedral, hexahedral, and dodecahedral). The directional coordination bonds enable the efficient formation of metallacycles and metallacages with well-defined architectures and geometries. SCCs exhibit several advantages, including good directionality, strong interaction force, tunable modularity, and good solution processability, making them highly attractive for biomedical applications, especially in cellular imaging and cancer therapy. Compared with their molecular precursors, SCCs demonstrate enhanced cellular uptake and a strengthened tumor accumulation effect, owing to their inherently charged structures. These properties and the chemotherapeutic potential inherent to organic platinum complexes have promoted their widespread application in antitumor therapy. Furthermore, the defined structures of SCCs, achieved <i>via</i> the design modification of assembly elements and introduction of different functional groups, enable them to combat malignant tumors through multipronged treatment modalities. Because the development of cancer-treatment methodologies integrated in clinics has evolved from single-modality chemotherapy to synergistic multimodal therapy, the development of functional SCCs for synergistic cancer therapy is crucial. While some pioneering reviews have explored the bioapplications of SCCs, often categorized by a specific function or focusing on the specific metal or ligand types, a comprehensive exploration of their synergistic multifunctionality is a critical gap in the current literature.</p><p >In this Account, we focus on platinum-based SCCs and their applications in cancer therapy. While other metals, such as Pd-, Rh-, Ru-, and Ir-based SCCs, have been explored for cancer therapy by Therrien and Casini et al., platinum-based SCCs have garnered significant interest, owing to their unique advantages in antitumor therapy. These platinum-based SCCs, which enhance antitumor efficacy, are considered prominent candidates for cancer therapies owing to their desirable properties, such as potent antitumor activity, exceptionally low systemic toxicity, active tumor-targeting ability, and enhanced cellular uptake. Furthermore, diverse diagnostic and therapeutic modalities (e.g., chemotherapy, photothermal therapy, and photodynamic therapy) can be integrated into a single platform based on platinum-based SCCs for cancer therapy. Consequently, herein, we summarize our recent research on platinum-based SCCs for synergistic cancer therapy with particular emphasis on the cooperative interplay between different therapeutic methods. In the Conclusions section, we present the key advancements achieved on the basis of our research findings and propose future directions that may significantly impact the field.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supramolecular Coordination Complexes for Synergistic Cancer Therapy\",\"authors\":\"Yang Li,&nbsp;Feihe Huang*,&nbsp;Peter J. Stang* and Shouchun Yin*,&nbsp;\",\"doi\":\"10.1021/acs.accounts.4c00031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Supramolecular coordination complexes (SCCs) are predictable and size-tunable supramolecular self-assemblies constructed through directional coordination bonds between readily available organic ligands and metallic receptors. Based on planar and 3D structures, SCCs can be mainly divided into two categories: metallacycles (e.g., rhomboidal, triangular, rectangular, and hexagonal) and metallacages (e.g., tetrahedral, hexahedral, and dodecahedral). The directional coordination bonds enable the efficient formation of metallacycles and metallacages with well-defined architectures and geometries. SCCs exhibit several advantages, including good directionality, strong interaction force, tunable modularity, and good solution processability, making them highly attractive for biomedical applications, especially in cellular imaging and cancer therapy. Compared with their molecular precursors, SCCs demonstrate enhanced cellular uptake and a strengthened tumor accumulation effect, owing to their inherently charged structures. These properties and the chemotherapeutic potential inherent to organic platinum complexes have promoted their widespread application in antitumor therapy. Furthermore, the defined structures of SCCs, achieved <i>via</i> the design modification of assembly elements and introduction of different functional groups, enable them to combat malignant tumors through multipronged treatment modalities. Because the development of cancer-treatment methodologies integrated in clinics has evolved from single-modality chemotherapy to synergistic multimodal therapy, the development of functional SCCs for synergistic cancer therapy is crucial. While some pioneering reviews have explored the bioapplications of SCCs, often categorized by a specific function or focusing on the specific metal or ligand types, a comprehensive exploration of their synergistic multifunctionality is a critical gap in the current literature.</p><p >In this Account, we focus on platinum-based SCCs and their applications in cancer therapy. While other metals, such as Pd-, Rh-, Ru-, and Ir-based SCCs, have been explored for cancer therapy by Therrien and Casini et al., platinum-based SCCs have garnered significant interest, owing to their unique advantages in antitumor therapy. These platinum-based SCCs, which enhance antitumor efficacy, are considered prominent candidates for cancer therapies owing to their desirable properties, such as potent antitumor activity, exceptionally low systemic toxicity, active tumor-targeting ability, and enhanced cellular uptake. Furthermore, diverse diagnostic and therapeutic modalities (e.g., chemotherapy, photothermal therapy, and photodynamic therapy) can be integrated into a single platform based on platinum-based SCCs for cancer therapy. Consequently, herein, we summarize our recent research on platinum-based SCCs for synergistic cancer therapy with particular emphasis on the cooperative interplay between different therapeutic methods. In the Conclusions section, we present the key advancements achieved on the basis of our research findings and propose future directions that may significantly impact the field.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.accounts.4c00031\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.accounts.4c00031","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Conspectus 超分子配位复合物(SCC)是通过现成的有机配体和金属受体之间的定向配位键构建而成的可预测和尺寸可调的超分子自组装体。根据平面和三维结构,SCC 主要可分为两类:金属圆(如斜方体、三角形、矩形和六角形)和金属笼(如四面体、六面体和十二面体)。通过定向配位键,可以有效地形成具有明确结构和几何形状的金属环和金属链。SCC 具有多种优势,包括良好的方向性、较强的相互作用力、可调的模块性和良好的溶液加工性,因此在生物医学应用中,尤其是在细胞成像和癌症治疗方面极具吸引力。与分子前体相比,SCC 因其固有的带电结构而具有更高的细胞吸收率和更强的肿瘤蓄积效应。这些特性以及有机铂复合物固有的化疗潜力促进了它们在抗肿瘤治疗中的广泛应用。此外,通过对组装元件进行设计修改和引入不同的功能基团,SCCs 的结构得以确定,这使它们能够通过多管齐下的治疗方式来对抗恶性肿瘤。由于临床上癌症治疗方法的发展已从单一模式的化疗发展到多模式的协同治疗,因此开发用于癌症协同治疗的功能性 SCC 至关重要。虽然一些开创性的综述探讨了 SCCs 的生物应用,但往往是按特定功能分类,或侧重于特定的金属或配体类型,而对其协同多功能性的全面探讨是目前文献中的一个重要空白。尽管 Therrien 和 Casini 等人已经探索了其他金属(如钯基、铑基、钌基和铱基 SCC)在癌症治疗中的应用,但铂基 SCC 因其在抗肿瘤治疗中的独特优势而备受关注。这些能提高抗肿瘤疗效的铂基 SCC 具有强大的抗肿瘤活性、极低的全身毒性、积极的肿瘤靶向能力和更强的细胞吸收能力等理想特性,因此被认为是癌症疗法的理想候选物质。此外,多种诊断和治疗方式(如化疗、光热疗法和光动力疗法)可以整合到基于铂基 SCC 的单一癌症治疗平台中。因此,我们在本文中总结了最近关于铂基 SCC 协同治疗癌症的研究,并特别强调了不同治疗方法之间的协同作用。在结论部分,我们将介绍在研究成果基础上取得的主要进展,并提出可能对该领域产生重大影响的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Supramolecular Coordination Complexes for Synergistic Cancer Therapy

Supramolecular Coordination Complexes for Synergistic Cancer Therapy

Supramolecular Coordination Complexes for Synergistic Cancer Therapy

Supramolecular coordination complexes (SCCs) are predictable and size-tunable supramolecular self-assemblies constructed through directional coordination bonds between readily available organic ligands and metallic receptors. Based on planar and 3D structures, SCCs can be mainly divided into two categories: metallacycles (e.g., rhomboidal, triangular, rectangular, and hexagonal) and metallacages (e.g., tetrahedral, hexahedral, and dodecahedral). The directional coordination bonds enable the efficient formation of metallacycles and metallacages with well-defined architectures and geometries. SCCs exhibit several advantages, including good directionality, strong interaction force, tunable modularity, and good solution processability, making them highly attractive for biomedical applications, especially in cellular imaging and cancer therapy. Compared with their molecular precursors, SCCs demonstrate enhanced cellular uptake and a strengthened tumor accumulation effect, owing to their inherently charged structures. These properties and the chemotherapeutic potential inherent to organic platinum complexes have promoted their widespread application in antitumor therapy. Furthermore, the defined structures of SCCs, achieved via the design modification of assembly elements and introduction of different functional groups, enable them to combat malignant tumors through multipronged treatment modalities. Because the development of cancer-treatment methodologies integrated in clinics has evolved from single-modality chemotherapy to synergistic multimodal therapy, the development of functional SCCs for synergistic cancer therapy is crucial. While some pioneering reviews have explored the bioapplications of SCCs, often categorized by a specific function or focusing on the specific metal or ligand types, a comprehensive exploration of their synergistic multifunctionality is a critical gap in the current literature.

In this Account, we focus on platinum-based SCCs and their applications in cancer therapy. While other metals, such as Pd-, Rh-, Ru-, and Ir-based SCCs, have been explored for cancer therapy by Therrien and Casini et al., platinum-based SCCs have garnered significant interest, owing to their unique advantages in antitumor therapy. These platinum-based SCCs, which enhance antitumor efficacy, are considered prominent candidates for cancer therapies owing to their desirable properties, such as potent antitumor activity, exceptionally low systemic toxicity, active tumor-targeting ability, and enhanced cellular uptake. Furthermore, diverse diagnostic and therapeutic modalities (e.g., chemotherapy, photothermal therapy, and photodynamic therapy) can be integrated into a single platform based on platinum-based SCCs for cancer therapy. Consequently, herein, we summarize our recent research on platinum-based SCCs for synergistic cancer therapy with particular emphasis on the cooperative interplay between different therapeutic methods. In the Conclusions section, we present the key advancements achieved on the basis of our research findings and propose future directions that may significantly impact the field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信