基于自适应氢梯度的自敏感神经形态设备

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2024-05-01 DOI:10.1016/j.matt.2024.03.002
Tao Zhang , Mingjie Hu , Md Zesun Ahmed Mia , Hao Zhang , Wei Mao , Katsuyuki Fukutani , Hiroyuki Matsuzaki , Lingzhi Wen , Cong Wang , Hongbo Zhao , Xuegang Chen , Yakun Yuan , Fanqi Meng , Ke Yang , Lili Zhang , Juan Wang , Aiguo Li , Weiwei Zhao , Shiming Lei , Jikun Chen , Hai-Tian Zhang
{"title":"基于自适应氢梯度的自敏感神经形态设备","authors":"Tao Zhang ,&nbsp;Mingjie Hu ,&nbsp;Md Zesun Ahmed Mia ,&nbsp;Hao Zhang ,&nbsp;Wei Mao ,&nbsp;Katsuyuki Fukutani ,&nbsp;Hiroyuki Matsuzaki ,&nbsp;Lingzhi Wen ,&nbsp;Cong Wang ,&nbsp;Hongbo Zhao ,&nbsp;Xuegang Chen ,&nbsp;Yakun Yuan ,&nbsp;Fanqi Meng ,&nbsp;Ke Yang ,&nbsp;Lili Zhang ,&nbsp;Juan Wang ,&nbsp;Aiguo Li ,&nbsp;Weiwei Zhao ,&nbsp;Shiming Lei ,&nbsp;Jikun Chen ,&nbsp;Hai-Tian Zhang","doi":"10.1016/j.matt.2024.03.002","DOIUrl":null,"url":null,"abstract":"<div><p>Neuromorphic computing faces long-standing challenges in handling unknown situations beyond the preset boundaries, resulting in catastrophic information loss and model failure. These predicaments arise from the existing brain-inspired hardware’s inability to grasp critical information across diverse inputs, often responding passively within unalterable boundaries. Here, we report self-sensitization in perovskite neurons based on an adaptive hydrogen gradient, transcending the conventional fixed response range to autonomously capture unrecognized information. The networks with self-sensitizable neurons work well under unknown environments by reshaping the information reception range and feature salience. It can address the information loss and achieve seamless transition, processing ∼250% more structural information than traditional networks in building detection. Furthermore, the self-sensitizable convolutional network can surpass model boundaries to tackle the data drift accompanying varying inputs, improving accuracy by ∼110% in vehicle classification. The self-sensitizable neuron enables networks to autonomously cope with unforeseen environments, opening new avenues for self-guided cognitive systems.</p></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":null,"pages":null},"PeriodicalIF":17.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-sensitizable neuromorphic device based on adaptive hydrogen gradient\",\"authors\":\"Tao Zhang ,&nbsp;Mingjie Hu ,&nbsp;Md Zesun Ahmed Mia ,&nbsp;Hao Zhang ,&nbsp;Wei Mao ,&nbsp;Katsuyuki Fukutani ,&nbsp;Hiroyuki Matsuzaki ,&nbsp;Lingzhi Wen ,&nbsp;Cong Wang ,&nbsp;Hongbo Zhao ,&nbsp;Xuegang Chen ,&nbsp;Yakun Yuan ,&nbsp;Fanqi Meng ,&nbsp;Ke Yang ,&nbsp;Lili Zhang ,&nbsp;Juan Wang ,&nbsp;Aiguo Li ,&nbsp;Weiwei Zhao ,&nbsp;Shiming Lei ,&nbsp;Jikun Chen ,&nbsp;Hai-Tian Zhang\",\"doi\":\"10.1016/j.matt.2024.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Neuromorphic computing faces long-standing challenges in handling unknown situations beyond the preset boundaries, resulting in catastrophic information loss and model failure. These predicaments arise from the existing brain-inspired hardware’s inability to grasp critical information across diverse inputs, often responding passively within unalterable boundaries. Here, we report self-sensitization in perovskite neurons based on an adaptive hydrogen gradient, transcending the conventional fixed response range to autonomously capture unrecognized information. The networks with self-sensitizable neurons work well under unknown environments by reshaping the information reception range and feature salience. It can address the information loss and achieve seamless transition, processing ∼250% more structural information than traditional networks in building detection. Furthermore, the self-sensitizable convolutional network can surpass model boundaries to tackle the data drift accompanying varying inputs, improving accuracy by ∼110% in vehicle classification. The self-sensitizable neuron enables networks to autonomously cope with unforeseen environments, opening new avenues for self-guided cognitive systems.</p></div>\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590238524001085\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238524001085","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

神经形态计算在处理超出预设边界的未知情况时长期面临挑战,导致灾难性的信息丢失和模型失效。这些困境源于现有的大脑启发硬件无法掌握各种输入的关键信息,通常只能在不可改变的边界内被动响应。在这里,我们报告了基于自适应氢梯度的包晶神经元的自敏感性,它超越了传统的固定响应范围,能够自主捕捉未识别的信息。自敏感神经元网络通过重塑信息接收范围和特征显著性,在未知环境下工作良好。它可以解决信息丢失问题,实现无缝过渡,在建筑物检测中处理的结构信息比传统网络多 250%。此外,自敏感卷积网络还能超越模型边界,解决输入变化带来的数据漂移问题,在车辆分类中提高了 ∼110% 的准确率。自敏感神经元使网络能够自主应对不可预见的环境,为自我引导的认知系统开辟了新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Self-sensitizable neuromorphic device based on adaptive hydrogen gradient

Self-sensitizable neuromorphic device based on adaptive hydrogen gradient

Self-sensitizable neuromorphic device based on adaptive hydrogen gradient

Neuromorphic computing faces long-standing challenges in handling unknown situations beyond the preset boundaries, resulting in catastrophic information loss and model failure. These predicaments arise from the existing brain-inspired hardware’s inability to grasp critical information across diverse inputs, often responding passively within unalterable boundaries. Here, we report self-sensitization in perovskite neurons based on an adaptive hydrogen gradient, transcending the conventional fixed response range to autonomously capture unrecognized information. The networks with self-sensitizable neurons work well under unknown environments by reshaping the information reception range and feature salience. It can address the information loss and achieve seamless transition, processing ∼250% more structural information than traditional networks in building detection. Furthermore, the self-sensitizable convolutional network can surpass model boundaries to tackle the data drift accompanying varying inputs, improving accuracy by ∼110% in vehicle classification. The self-sensitizable neuron enables networks to autonomously cope with unforeseen environments, opening new avenues for self-guided cognitive systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信