平面图正方形中的边界簇大小

IF 1 3区 数学 Q1 MATHEMATICS
Daniel W. Cranston
{"title":"平面图正方形中的边界簇大小","authors":"Daniel W. Cranston","doi":"10.1016/j.ejc.2024.103960","DOIUrl":null,"url":null,"abstract":"<div><p>Wegner conjectured that if <span><math><mi>G</mi></math></span> is a planar graph with maximum degree <span><math><mrow><mi>Δ</mi><mo>≥</mo><mn>8</mn></mrow></math></span>, then <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>≤</mo><mfenced><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>Δ</mi></mrow></mfenced><mo>+</mo><mn>1</mn></mrow></math></span>. This problem has received much attention, but remains open for all <span><math><mrow><mi>Δ</mi><mo>≥</mo><mn>8</mn></mrow></math></span>. Here we prove an analogous bound on <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>: If <span><math><mi>G</mi></math></span> is a plane graph with <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mn>36</mn></mrow></math></span>, then <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>≤</mo><mrow><mo>⌊</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>⌋</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span>. In fact, this is a corollary of the following lemma, which is our main result. If <span><math><mi>G</mi></math></span> is a plane graph with <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mn>19</mn></mrow></math></span> and <span><math><mi>S</mi></math></span> is a maximal clique in <span><math><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> with <span><math><mrow><mrow><mo>|</mo><mi>S</mi><mo>|</mo></mrow><mo>≥</mo><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mn>20</mn></mrow></math></span>, then there exist <span><math><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> such that <span><math><mrow><mi>S</mi><mo>=</mo><mrow><mo>{</mo><mi>w</mi><mo>:</mo><mrow><mo>|</mo><mi>N</mi><mrow><mo>[</mo><mi>w</mi><mo>]</mo></mrow><mo>∩</mo><mrow><mo>{</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>}</mo></mrow><mo>|</mo></mrow><mo>≥</mo><mn>2</mn><mo>}</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounding clique size in squares of planar graphs\",\"authors\":\"Daniel W. Cranston\",\"doi\":\"10.1016/j.ejc.2024.103960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Wegner conjectured that if <span><math><mi>G</mi></math></span> is a planar graph with maximum degree <span><math><mrow><mi>Δ</mi><mo>≥</mo><mn>8</mn></mrow></math></span>, then <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>≤</mo><mfenced><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>Δ</mi></mrow></mfenced><mo>+</mo><mn>1</mn></mrow></math></span>. This problem has received much attention, but remains open for all <span><math><mrow><mi>Δ</mi><mo>≥</mo><mn>8</mn></mrow></math></span>. Here we prove an analogous bound on <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>: If <span><math><mi>G</mi></math></span> is a plane graph with <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mn>36</mn></mrow></math></span>, then <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>≤</mo><mrow><mo>⌊</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>⌋</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span>. In fact, this is a corollary of the following lemma, which is our main result. If <span><math><mi>G</mi></math></span> is a plane graph with <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mn>19</mn></mrow></math></span> and <span><math><mi>S</mi></math></span> is a maximal clique in <span><math><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> with <span><math><mrow><mrow><mo>|</mo><mi>S</mi><mo>|</mo></mrow><mo>≥</mo><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mn>20</mn></mrow></math></span>, then there exist <span><math><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> such that <span><math><mrow><mi>S</mi><mo>=</mo><mrow><mo>{</mo><mi>w</mi><mo>:</mo><mrow><mo>|</mo><mi>N</mi><mrow><mo>[</mo><mi>w</mi><mo>]</mo></mrow><mo>∩</mo><mrow><mo>{</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>}</mo></mrow><mo>|</mo></mrow><mo>≥</mo><mn>2</mn><mo>}</mo></mrow></mrow></math></span>.</p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669824000453\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824000453","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

韦格纳猜想,如果 G 是最大度数 Δ≥8 的平面图,那么 χ(G2)≤32Δ+1。这个问题受到了广泛关注,但对于所有 Δ≥8 的情况,这个问题仍未解决。在此,我们证明了 ω(G2) 的类似约束:如果 G 是Δ(G)≥36 的平面图,那么 ω(G2)≤⌊32Δ(G)⌋+1。事实上,这是下面这个 Lemma 的推论,也是我们的主要结果。如果 G 是平面图,Δ(G)≥19,S 是 G2 中的最大簇,|S|≥Δ(G)+20,那么存在 x,y,z∈V(G),使得 S={w:|N[w]∩{x,y,z}|≥2}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounding clique size in squares of planar graphs

Wegner conjectured that if G is a planar graph with maximum degree Δ8, then χ(G2)32Δ+1. This problem has received much attention, but remains open for all Δ8. Here we prove an analogous bound on ω(G2): If G is a plane graph with Δ(G)36, then ω(G2)32Δ(G)+1. In fact, this is a corollary of the following lemma, which is our main result. If G is a plane graph with Δ(G)19 and S is a maximal clique in G2 with |S|Δ(G)+20, then there exist x,y,zV(G) such that S={w:|N[w]{x,y,z}|2}.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信