Mohamed Eturki, Kermit G Davis, Melissa Vincent, Susan F Arnold, Andrew Maier
{"title":"微环境因素对呼吸区暴露的影响:模拟石化生产设施任务。","authors":"Mohamed Eturki, Kermit G Davis, Melissa Vincent, Susan F Arnold, Andrew Maier","doi":"10.1080/19338244.2024.2328523","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the impact of micro-environmental factors on worker breathing zone exposure levels in petrochemical facilities. A laboratory simulation study evaluated near-field exposure to methane for a typical maintenance task. Individual and combinations of micro-environmental factors significantly affected methane exposure. Airflow direction and speed were significant determinants of exposure concentration reduction. A side airflow direction at medium to high speed produced the lowest gas concentration in the breathing zone. Worker body orientation relative to the methane emission point was also a critical factor affecting gas concentration in the worker's breathing zone. The study provides insights into how variations in airflow and small changes in position impact near-field exposures for petrochemical tasks, guiding industrial hygiene professionals' training on qualitative exposure estimation and providing input for near-field exposure modeling to guide quantitative exposure and risk assessment.</p>","PeriodicalId":93879,"journal":{"name":"Archives of environmental & occupational health","volume":" ","pages":"11-22"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Micro-environmental factors impact breathing zone exposures: A simulated petrochemical manufacturing facility task.\",\"authors\":\"Mohamed Eturki, Kermit G Davis, Melissa Vincent, Susan F Arnold, Andrew Maier\",\"doi\":\"10.1080/19338244.2024.2328523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigates the impact of micro-environmental factors on worker breathing zone exposure levels in petrochemical facilities. A laboratory simulation study evaluated near-field exposure to methane for a typical maintenance task. Individual and combinations of micro-environmental factors significantly affected methane exposure. Airflow direction and speed were significant determinants of exposure concentration reduction. A side airflow direction at medium to high speed produced the lowest gas concentration in the breathing zone. Worker body orientation relative to the methane emission point was also a critical factor affecting gas concentration in the worker's breathing zone. The study provides insights into how variations in airflow and small changes in position impact near-field exposures for petrochemical tasks, guiding industrial hygiene professionals' training on qualitative exposure estimation and providing input for near-field exposure modeling to guide quantitative exposure and risk assessment.</p>\",\"PeriodicalId\":93879,\"journal\":{\"name\":\"Archives of environmental & occupational health\",\"volume\":\" \",\"pages\":\"11-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of environmental & occupational health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19338244.2024.2328523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of environmental & occupational health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19338244.2024.2328523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Micro-environmental factors impact breathing zone exposures: A simulated petrochemical manufacturing facility task.
This study investigates the impact of micro-environmental factors on worker breathing zone exposure levels in petrochemical facilities. A laboratory simulation study evaluated near-field exposure to methane for a typical maintenance task. Individual and combinations of micro-environmental factors significantly affected methane exposure. Airflow direction and speed were significant determinants of exposure concentration reduction. A side airflow direction at medium to high speed produced the lowest gas concentration in the breathing zone. Worker body orientation relative to the methane emission point was also a critical factor affecting gas concentration in the worker's breathing zone. The study provides insights into how variations in airflow and small changes in position impact near-field exposures for petrochemical tasks, guiding industrial hygiene professionals' training on qualitative exposure estimation and providing input for near-field exposure modeling to guide quantitative exposure and risk assessment.