通过异质外延法从气相生长的 GaAs1-xPx 三元层的透射率和纳米硬度研究

Q2 Engineering
Valentin Petrov , Li Wang , Ginka Exner , Shivashankar R. Vangala , Aleksandar Grigorov , Elizabeth Ivanova , Peter G. Schunemann , Vladimir L. Tassev
{"title":"通过异质外延法从气相生长的 GaAs1-xPx 三元层的透射率和纳米硬度研究","authors":"Valentin Petrov ,&nbsp;Li Wang ,&nbsp;Ginka Exner ,&nbsp;Shivashankar R. Vangala ,&nbsp;Aleksandar Grigorov ,&nbsp;Elizabeth Ivanova ,&nbsp;Peter G. Schunemann ,&nbsp;Vladimir L. Tassev","doi":"10.1016/j.omx.2024.100313","DOIUrl":null,"url":null,"abstract":"<div><p>Transmission measurements in the 0.5–25-μm spectral range are performed on thin (&lt;350-μm) GaAsP layers grown by Hydride Vapor Phase Epitaxy (HVPE) on plain (100) GaAs substrates. Comparison with calculations taking into account multiple reflections reveals the role of the surface polishing quality on the clear transmission window and the wavelength dependent losses. A measurement of a 5-mm thick epitaxially grown GaP underlines more realistic spectral limitations on the application of orientation-patterned structures based on GaP and GaAsP for nonlinear optical frequency conversion. The mid-IR cut-off wavelength for the ternary GaAsP layers is almost independent of the composition and corresponds to the same two-phonon absorption limit observed in the binary GaP. Nanohardness and Young's modulus are measured for the same samples to evaluate their compositional dependence. The nanohardness dependence on the P-content obeys a second order polynomial law with a maximum around P = 0.8. Young's modulus depends linearly on the P-content, similar to the trend observed in other ternary systems, such as In<sub>x</sub>Ga<sub>1−x</sub>As and In<sub>x</sub>Ga<sub>1-x</sub>P. The evolution of the band-gap, estimated from the transmission measurements, with the composition of the ternary compounds is linear in the range of 0–0.5 for the P content. In this same range the nanohardness can be considered to be linearly proportional to the band-gap.</p></div>","PeriodicalId":52192,"journal":{"name":"Optical Materials: X","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590147824000251/pdfft?md5=43062240c91a76c8cd7895a8380dfbbe&pid=1-s2.0-S2590147824000251-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Transmission and nanohardness studies of ternary GaAs1-xPx layers grown from the vapor phase by heteroepitaxy\",\"authors\":\"Valentin Petrov ,&nbsp;Li Wang ,&nbsp;Ginka Exner ,&nbsp;Shivashankar R. Vangala ,&nbsp;Aleksandar Grigorov ,&nbsp;Elizabeth Ivanova ,&nbsp;Peter G. Schunemann ,&nbsp;Vladimir L. Tassev\",\"doi\":\"10.1016/j.omx.2024.100313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Transmission measurements in the 0.5–25-μm spectral range are performed on thin (&lt;350-μm) GaAsP layers grown by Hydride Vapor Phase Epitaxy (HVPE) on plain (100) GaAs substrates. Comparison with calculations taking into account multiple reflections reveals the role of the surface polishing quality on the clear transmission window and the wavelength dependent losses. A measurement of a 5-mm thick epitaxially grown GaP underlines more realistic spectral limitations on the application of orientation-patterned structures based on GaP and GaAsP for nonlinear optical frequency conversion. The mid-IR cut-off wavelength for the ternary GaAsP layers is almost independent of the composition and corresponds to the same two-phonon absorption limit observed in the binary GaP. Nanohardness and Young's modulus are measured for the same samples to evaluate their compositional dependence. The nanohardness dependence on the P-content obeys a second order polynomial law with a maximum around P = 0.8. Young's modulus depends linearly on the P-content, similar to the trend observed in other ternary systems, such as In<sub>x</sub>Ga<sub>1−x</sub>As and In<sub>x</sub>Ga<sub>1-x</sub>P. The evolution of the band-gap, estimated from the transmission measurements, with the composition of the ternary compounds is linear in the range of 0–0.5 for the P content. In this same range the nanohardness can be considered to be linearly proportional to the band-gap.</p></div>\",\"PeriodicalId\":52192,\"journal\":{\"name\":\"Optical Materials: X\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590147824000251/pdfft?md5=43062240c91a76c8cd7895a8380dfbbe&pid=1-s2.0-S2590147824000251-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Materials: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590147824000251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590147824000251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

在普通 (100) GaAs 基底上通过氢化物气相外延 (HVPE) 生长的 GaAsP 薄层(350-μm)上进行了 0.5-25μm 光谱范围内的透射测量。通过与考虑了多重反射的计算结果进行比较,发现了表面抛光质量对清晰透射窗口和波长相关损耗的影响。对 5 毫米厚的外延生长 GaP 的测量强调了基于 GaP 和 GaAsP 的取向图案结构在非线性光学频率转换应用中更现实的光谱限制。三元 GaAsP 层的中红外截止波长几乎与成分无关,与二元 GaP 中观察到的双声子吸收极限相同。对相同样品的纳米硬度和杨氏模量进行了测量,以评估其成分依赖性。纳米硬度与 P 含量的关系服从二阶多项式定律,在 P = 0.8 左右达到最大值。杨氏模量与 P 含量呈线性关系,这与在 InxGa1-xAs 和 InxGa1-xP 等其他三元系统中观察到的趋势相似。根据透射测量结果估算,带隙随三元化合物成分的变化在 P 含量为 0-0.5 的范围内呈线性关系。在同一范围内,纳米硬度可视为与带隙成线性比例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transmission and nanohardness studies of ternary GaAs1-xPx layers grown from the vapor phase by heteroepitaxy

Transmission measurements in the 0.5–25-μm spectral range are performed on thin (<350-μm) GaAsP layers grown by Hydride Vapor Phase Epitaxy (HVPE) on plain (100) GaAs substrates. Comparison with calculations taking into account multiple reflections reveals the role of the surface polishing quality on the clear transmission window and the wavelength dependent losses. A measurement of a 5-mm thick epitaxially grown GaP underlines more realistic spectral limitations on the application of orientation-patterned structures based on GaP and GaAsP for nonlinear optical frequency conversion. The mid-IR cut-off wavelength for the ternary GaAsP layers is almost independent of the composition and corresponds to the same two-phonon absorption limit observed in the binary GaP. Nanohardness and Young's modulus are measured for the same samples to evaluate their compositional dependence. The nanohardness dependence on the P-content obeys a second order polynomial law with a maximum around P = 0.8. Young's modulus depends linearly on the P-content, similar to the trend observed in other ternary systems, such as InxGa1−xAs and InxGa1-xP. The evolution of the band-gap, estimated from the transmission measurements, with the composition of the ternary compounds is linear in the range of 0–0.5 for the P content. In this same range the nanohardness can be considered to be linearly proportional to the band-gap.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optical Materials: X
Optical Materials: X Engineering-Electrical and Electronic Engineering
CiteScore
3.30
自引率
0.00%
发文量
73
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信