ETS 易位变异体 5(ETV5)可促进炎症性肠病中 CD4+ T 细胞介导的肠道炎症和纤维化。

IF 7.9 2区 医学 Q1 IMMUNOLOGY
{"title":"ETS 易位变异体 5(ETV5)可促进炎症性肠病中 CD4+ T 细胞介导的肠道炎症和纤维化。","authors":"","doi":"10.1016/j.mucimm.2024.03.010","DOIUrl":null,"url":null,"abstract":"<div><p>E26 transformation-specific translocation variant 5 (ETV5) has been implicated in the pathogenesis of inflammatory bowel diseases (IBD). However, the exact roles of ETV5 in regulating CD4<sup>+</sup> T cell–mediated intestinal inflammation and fibrosis formation remain unclear. Here, we reveal that ETV5 overexpression induced interleukin (IL)-9 and its transcription factor IRF4 expression in IBD CD4<sup>+</sup> T cells under T helper type 9 (Th9) cells–polarizing conditions. The silencing of IRF4 inhibited ETV5-induced IL-9 expression. CD4<sup>+</sup> T cell–specific ETV5 deletion ameliorated intestinal inflammation and fibrosis in trinitrobenzene sulfonic acid (TNBS)–induced experimental colitis and CD4<sup>+</sup> T cell–transferred recombination-activating gene-1 knockout (Rag1<sup>−/−</sup>) colitis mice, characterized by less CD4<sup>+</sup> T cell infiltration and lower fibroblast activation and collagen deposition in the colonic tissues. Furthermore, IL-9 treatment aggressive TNBS–induced intestinal fibrosis in CD4<sup>+</sup> T cell–specific ETV5 deletion and wild-type control mice. <em>In vitro</em>, human intestinal fibroblasts cocultured with ETV5 overexpressed-Th9 cells expressed higher levels of collagen I and III, whereas an inclusion of anti-IL-9 antibody could reverse this effect. Ribonucleic acid sequencing analysis demonstrated that IL-9 upregulated TAF1 expression in human intestinal fibroblasts. Clinical data showed that number of α-smooth muscle actin<sup>+</sup>TAF1<sup>+</sup> fibroblasts are higher in inflamed mucosa of patients with IBD. Importantly, TAF1 small interfering ribonucleic acid treatment suppressed IL-9–mediated profibrotic effect <em>in vitro</em>. These findings reveal that CD4<sup>+</sup> T cell–derived ETV5 promotes intestinal inflammation and fibrosis through upregulating IL-9–mediated intestinal inflammatory and fibrotic response in IBD. Thus, the ETV5/IL-9 signal pathway in T cells might represent a novel therapeutic target for intestinal inflammation and fibrosis in IBD.</p></div>","PeriodicalId":18877,"journal":{"name":"Mucosal Immunology","volume":"17 4","pages":"Pages 584-598"},"PeriodicalIF":7.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1933021924000308/pdfft?md5=fee9b986ce3d09219e662f20c28dd077&pid=1-s2.0-S1933021924000308-main.pdf","citationCount":"0","resultStr":"{\"title\":\"ETS translocation variant 5 (ETV5) promotes CD4+ T cell–mediated intestinal inflammation and fibrosis in inflammatory bowel diseases\",\"authors\":\"\",\"doi\":\"10.1016/j.mucimm.2024.03.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>E26 transformation-specific translocation variant 5 (ETV5) has been implicated in the pathogenesis of inflammatory bowel diseases (IBD). However, the exact roles of ETV5 in regulating CD4<sup>+</sup> T cell–mediated intestinal inflammation and fibrosis formation remain unclear. Here, we reveal that ETV5 overexpression induced interleukin (IL)-9 and its transcription factor IRF4 expression in IBD CD4<sup>+</sup> T cells under T helper type 9 (Th9) cells–polarizing conditions. The silencing of IRF4 inhibited ETV5-induced IL-9 expression. CD4<sup>+</sup> T cell–specific ETV5 deletion ameliorated intestinal inflammation and fibrosis in trinitrobenzene sulfonic acid (TNBS)–induced experimental colitis and CD4<sup>+</sup> T cell–transferred recombination-activating gene-1 knockout (Rag1<sup>−/−</sup>) colitis mice, characterized by less CD4<sup>+</sup> T cell infiltration and lower fibroblast activation and collagen deposition in the colonic tissues. Furthermore, IL-9 treatment aggressive TNBS–induced intestinal fibrosis in CD4<sup>+</sup> T cell–specific ETV5 deletion and wild-type control mice. <em>In vitro</em>, human intestinal fibroblasts cocultured with ETV5 overexpressed-Th9 cells expressed higher levels of collagen I and III, whereas an inclusion of anti-IL-9 antibody could reverse this effect. Ribonucleic acid sequencing analysis demonstrated that IL-9 upregulated TAF1 expression in human intestinal fibroblasts. Clinical data showed that number of α-smooth muscle actin<sup>+</sup>TAF1<sup>+</sup> fibroblasts are higher in inflamed mucosa of patients with IBD. Importantly, TAF1 small interfering ribonucleic acid treatment suppressed IL-9–mediated profibrotic effect <em>in vitro</em>. These findings reveal that CD4<sup>+</sup> T cell–derived ETV5 promotes intestinal inflammation and fibrosis through upregulating IL-9–mediated intestinal inflammatory and fibrotic response in IBD. Thus, the ETV5/IL-9 signal pathway in T cells might represent a novel therapeutic target for intestinal inflammation and fibrosis in IBD.</p></div>\",\"PeriodicalId\":18877,\"journal\":{\"name\":\"Mucosal Immunology\",\"volume\":\"17 4\",\"pages\":\"Pages 584-598\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1933021924000308/pdfft?md5=fee9b986ce3d09219e662f20c28dd077&pid=1-s2.0-S1933021924000308-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mucosal Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1933021924000308\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mucosal Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1933021924000308","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

ETS 易位变异体 5(ETV5)与炎症性肠病(IBD)的发病机制有关。然而,ETV5 在调控 CD4+ T 细胞介导的肠道炎症和纤维化形成中的确切作用仍不清楚。在这里,我们发现在Th9极化条件下,ETV5的过表达会诱导IL-9及其转录因子IRF4在幼稚IBD CD4+ T细胞中的表达。抑制IRF4可抑制ETV5诱导的IL-9表达。CD4+ T细胞特异性ETV5缺失(CKO)可改善TNBS诱导的实验性结肠炎和CD4+ T细胞转移Rag1-/-结肠炎小鼠的肠道炎症和纤维化,其特征是CD4+ T细胞浸润减少、成纤维细胞活化和结肠组织胶原沉积降低。此外,IL-9 治疗对 CKO 和野生型(WT)对照小鼠 TNBS 诱导的肠纤维化具有抑制作用。在体外,与ETV5过表达-Th9细胞共培养的人肠成纤维细胞表达了更高水平的胶原蛋白I和III,而加入抗IL-9抗体可以逆转这种效应。RNA 测序分析表明,IL-9 上调了人类肠成纤维细胞中 TAF1 的表达。临床数据显示,IBD 患者炎症黏膜中的α-SMA+TAF1+成纤维细胞数量较多。重要的是,TAF1 siRNA 治疗可抑制 IL-9 在体外介导的组织坏死效应。这些发现揭示了 CD4+ T 细胞衍生的 ETV5 通过上调 IL-9 介导的 IBD 肠道炎症和纤维化反应,促进肠道炎症和纤维化。因此,T细胞中的ETV5/IL-9信号通路可能是治疗IBD肠道炎症和纤维化的新靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ETS translocation variant 5 (ETV5) promotes CD4+ T cell–mediated intestinal inflammation and fibrosis in inflammatory bowel diseases

E26 transformation-specific translocation variant 5 (ETV5) has been implicated in the pathogenesis of inflammatory bowel diseases (IBD). However, the exact roles of ETV5 in regulating CD4+ T cell–mediated intestinal inflammation and fibrosis formation remain unclear. Here, we reveal that ETV5 overexpression induced interleukin (IL)-9 and its transcription factor IRF4 expression in IBD CD4+ T cells under T helper type 9 (Th9) cells–polarizing conditions. The silencing of IRF4 inhibited ETV5-induced IL-9 expression. CD4+ T cell–specific ETV5 deletion ameliorated intestinal inflammation and fibrosis in trinitrobenzene sulfonic acid (TNBS)–induced experimental colitis and CD4+ T cell–transferred recombination-activating gene-1 knockout (Rag1−/−) colitis mice, characterized by less CD4+ T cell infiltration and lower fibroblast activation and collagen deposition in the colonic tissues. Furthermore, IL-9 treatment aggressive TNBS–induced intestinal fibrosis in CD4+ T cell–specific ETV5 deletion and wild-type control mice. In vitro, human intestinal fibroblasts cocultured with ETV5 overexpressed-Th9 cells expressed higher levels of collagen I and III, whereas an inclusion of anti-IL-9 antibody could reverse this effect. Ribonucleic acid sequencing analysis demonstrated that IL-9 upregulated TAF1 expression in human intestinal fibroblasts. Clinical data showed that number of α-smooth muscle actin+TAF1+ fibroblasts are higher in inflamed mucosa of patients with IBD. Importantly, TAF1 small interfering ribonucleic acid treatment suppressed IL-9–mediated profibrotic effect in vitro. These findings reveal that CD4+ T cell–derived ETV5 promotes intestinal inflammation and fibrosis through upregulating IL-9–mediated intestinal inflammatory and fibrotic response in IBD. Thus, the ETV5/IL-9 signal pathway in T cells might represent a novel therapeutic target for intestinal inflammation and fibrosis in IBD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mucosal Immunology
Mucosal Immunology 医学-免疫学
CiteScore
16.60
自引率
3.80%
发文量
100
审稿时长
12 days
期刊介绍: Mucosal Immunology, the official publication of the Society of Mucosal Immunology (SMI), serves as a forum for both basic and clinical scientists to discuss immunity and inflammation involving mucosal tissues. It covers gastrointestinal, pulmonary, nasopharyngeal, oral, ocular, and genitourinary immunology through original research articles, scholarly reviews, commentaries, editorials, and letters. The journal gives equal consideration to basic, translational, and clinical studies and also serves as a primary communication channel for the SMI governing board and its members, featuring society news, meeting announcements, policy discussions, and job/training opportunities advertisements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信