Benxun Pan, Canyong Guo, Dongsheng Liu, Kurt Wüthrich
{"title":"在 Pichia pastoris 表达中使用 5-氟吲哚前体对 G 蛋白偶联受体 NK1R 中的色氨酸残基进行氟-19 标记。","authors":"Benxun Pan, Canyong Guo, Dongsheng Liu, Kurt Wüthrich","doi":"10.1007/s10858-024-00439-6","DOIUrl":null,"url":null,"abstract":"<div><p>\n In NMR spectroscopy of biomolecular systems, the use of fluorine-19 probes benefits from a clean background and high sensitivity. Therefore, <sup>19</sup>F-labeling procedures are of wide-spread interest. Here, we use 5-fluoroindole as a precursor for cost-effective residue-specific introduction of 5-fluorotryptophan (5F-Trp) into G protein-coupled receptors (GPCRs) expressed in <i>Pichia pastoris</i>. The method was successfully implemented with the neurokinin 1 receptor (NK1R). The <sup>19</sup>F-NMR spectra of 5F-Trp-labeled NK1R showed one well-separated high field-shifted resonance, which was assigned by mutational studies to the “toggle switch tryptophan”. Residue-selective labeling thus enables site-specific investigations of this functionally important residue. The method described here is inexpensive, requires minimal genetic manipulation and can be expected to be applicable for yeast expression of GPCRs at large.</p></div>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":"78 3","pages":"133 - 138"},"PeriodicalIF":1.3000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluorine-19 labeling of the tryptophan residues in the G protein-coupled receptor NK1R using the 5-fluoroindole precursor in Pichia pastoris expression\",\"authors\":\"Benxun Pan, Canyong Guo, Dongsheng Liu, Kurt Wüthrich\",\"doi\":\"10.1007/s10858-024-00439-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>\\n In NMR spectroscopy of biomolecular systems, the use of fluorine-19 probes benefits from a clean background and high sensitivity. Therefore, <sup>19</sup>F-labeling procedures are of wide-spread interest. Here, we use 5-fluoroindole as a precursor for cost-effective residue-specific introduction of 5-fluorotryptophan (5F-Trp) into G protein-coupled receptors (GPCRs) expressed in <i>Pichia pastoris</i>. The method was successfully implemented with the neurokinin 1 receptor (NK1R). The <sup>19</sup>F-NMR spectra of 5F-Trp-labeled NK1R showed one well-separated high field-shifted resonance, which was assigned by mutational studies to the “toggle switch tryptophan”. Residue-selective labeling thus enables site-specific investigations of this functionally important residue. The method described here is inexpensive, requires minimal genetic manipulation and can be expected to be applicable for yeast expression of GPCRs at large.</p></div>\",\"PeriodicalId\":613,\"journal\":{\"name\":\"Journal of Biomolecular NMR\",\"volume\":\"78 3\",\"pages\":\"133 - 138\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular NMR\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10858-024-00439-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular NMR","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10858-024-00439-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Fluorine-19 labeling of the tryptophan residues in the G protein-coupled receptor NK1R using the 5-fluoroindole precursor in Pichia pastoris expression
In NMR spectroscopy of biomolecular systems, the use of fluorine-19 probes benefits from a clean background and high sensitivity. Therefore, 19F-labeling procedures are of wide-spread interest. Here, we use 5-fluoroindole as a precursor for cost-effective residue-specific introduction of 5-fluorotryptophan (5F-Trp) into G protein-coupled receptors (GPCRs) expressed in Pichia pastoris. The method was successfully implemented with the neurokinin 1 receptor (NK1R). The 19F-NMR spectra of 5F-Trp-labeled NK1R showed one well-separated high field-shifted resonance, which was assigned by mutational studies to the “toggle switch tryptophan”. Residue-selective labeling thus enables site-specific investigations of this functionally important residue. The method described here is inexpensive, requires minimal genetic manipulation and can be expected to be applicable for yeast expression of GPCRs at large.
期刊介绍:
The Journal of Biomolecular NMR provides a forum for publishing research on technical developments and innovative applications of nuclear magnetic resonance spectroscopy for the study of structure and dynamic properties of biopolymers in solution, liquid crystals, solids and mixed environments, e.g., attached to membranes. This may include:
Three-dimensional structure determination of biological macromolecules (polypeptides/proteins, DNA, RNA, oligosaccharides) by NMR.
New NMR techniques for studies of biological macromolecules.
Novel approaches to computer-aided automated analysis of multidimensional NMR spectra.
Computational methods for the structural interpretation of NMR data, including structure refinement.
Comparisons of structures determined by NMR with those obtained by other methods, e.g. by diffraction techniques with protein single crystals.
New techniques of sample preparation for NMR experiments (biosynthetic and chemical methods for isotope labeling, preparation of nutrients for biosynthetic isotope labeling, etc.). An NMR characterization of the products must be included.