采用独特的物理涂层策略制备的核壳 TiO2@Au 纳米纤维可制成卓越的电容性储能纳米复合材料

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zengliang Ren, Zhicheng Shi, Qingyang Tang, Shuimiao Xia, Liang Sun, Runhua Fan, Hongzhi Cui, Hong Wang
{"title":"采用独特的物理涂层策略制备的核壳 TiO2@Au 纳米纤维可制成卓越的电容性储能纳米复合材料","authors":"Zengliang Ren,&nbsp;Zhicheng Shi,&nbsp;Qingyang Tang,&nbsp;Shuimiao Xia,&nbsp;Liang Sun,&nbsp;Runhua Fan,&nbsp;Hongzhi Cui,&nbsp;Hong Wang","doi":"10.1002/adfm.202401907","DOIUrl":null,"url":null,"abstract":"<p>Polymer dielectrics have been widely employed in pulsed power systems, but their applications are severely restricted by the low energy density. Incorporating core-shell nanofillers is one promising strategy to enhance the energy density of polymer dielectrics. Nowadays, core-shell nanofillers are mainly prepared via chemical coating strategies, which always involve complex chemical synthesis procedures. Herein, a unique physical coating strategy is developed to prepare core-shell TiO<sub>2</sub>@Au nanofibers consisting of monodispersed Au nanoparticles homogeneously anchored on the TiO<sub>2</sub> nanofibers. Interestingly, the TiO<sub>2</sub>@Au nanofibers show outstanding dielectric energy storage boosting capability. Specifically, with merely introducing 0.1 wt.% TiO<sub>2</sub>@Au nanofillers, the TiO<sub>2</sub>@Au/PVDF composite exhibits a substantially enhanced breakdown strength of 749 MV m<sup>−1</sup>, which reaches 152.8% of PVDF. Meanwhile, a high dielectric constant of 10.2 (114.1% of PVDF) is obtained. Consequently, an ultrahigh energy density of 18.6 J cm<sup>−3</sup>, which is 250.1% of PVDF, is achieved. It is further revealed that the significant energy storage boosting effect is originated from the Coulomb blockade and micro-capacitor effects of the TiO<sub>2</sub>@Au nanofibers. This work establishes a unique paradigm for the facile preparation of core-shell nanomaterials, which have huge potential for both dielectric energy storage and other functional nanocomposites.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"34 36","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Core-shell TiO2@Au Nanofibers Derived from a Unique Physical Coating Strategy for Excellent Capacitive Energy Storage Nanocomposites\",\"authors\":\"Zengliang Ren,&nbsp;Zhicheng Shi,&nbsp;Qingyang Tang,&nbsp;Shuimiao Xia,&nbsp;Liang Sun,&nbsp;Runhua Fan,&nbsp;Hongzhi Cui,&nbsp;Hong Wang\",\"doi\":\"10.1002/adfm.202401907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Polymer dielectrics have been widely employed in pulsed power systems, but their applications are severely restricted by the low energy density. Incorporating core-shell nanofillers is one promising strategy to enhance the energy density of polymer dielectrics. Nowadays, core-shell nanofillers are mainly prepared via chemical coating strategies, which always involve complex chemical synthesis procedures. Herein, a unique physical coating strategy is developed to prepare core-shell TiO<sub>2</sub>@Au nanofibers consisting of monodispersed Au nanoparticles homogeneously anchored on the TiO<sub>2</sub> nanofibers. Interestingly, the TiO<sub>2</sub>@Au nanofibers show outstanding dielectric energy storage boosting capability. Specifically, with merely introducing 0.1 wt.% TiO<sub>2</sub>@Au nanofillers, the TiO<sub>2</sub>@Au/PVDF composite exhibits a substantially enhanced breakdown strength of 749 MV m<sup>−1</sup>, which reaches 152.8% of PVDF. Meanwhile, a high dielectric constant of 10.2 (114.1% of PVDF) is obtained. Consequently, an ultrahigh energy density of 18.6 J cm<sup>−3</sup>, which is 250.1% of PVDF, is achieved. It is further revealed that the significant energy storage boosting effect is originated from the Coulomb blockade and micro-capacitor effects of the TiO<sub>2</sub>@Au nanofibers. This work establishes a unique paradigm for the facile preparation of core-shell nanomaterials, which have huge potential for both dielectric energy storage and other functional nanocomposites.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"34 36\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202401907\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202401907","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

聚合物电介质已被广泛应用于脉冲功率系统,但其应用因能量密度低而受到严重限制。加入核壳纳米填料是提高聚合物电介质能量密度的一种可行策略。目前,核壳纳米填料主要是通过化学涂层策略制备的,这种策略总是涉及复杂的化学合成过程。本文开发了一种独特的物理涂层策略来制备核壳 TiO2@Au 纳米纤维,该策略由均匀锚定在 TiO2 纳米纤维上的单分散金纳米粒子组成。有趣的是,TiO2@Au 纳米纤维显示出卓越的介电储能增强能力。具体来说,只需引入 0.1 wt.% 的 TiO2@Au 纳米填料,TiO2@Au/PVDF 复合材料的击穿强度就能大幅提高至 749 MV m-1,达到 PVDF 的 152.8%。同时,还获得了 10.2 的高介电常数(PVDF 的 114.1%)。因此,实现了 18.6 J cm-3 的超高能量密度,是 PVDF 的 250.1%。研究进一步表明,TiO2@Au 纳米纤维的库仑阻滞和微电容效应产生了显著的储能增效作用。这项工作为核壳纳米材料的简便制备建立了一个独特的范例,核壳纳米材料在电介质储能和其他功能纳米复合材料方面具有巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Core-shell TiO2@Au Nanofibers Derived from a Unique Physical Coating Strategy for Excellent Capacitive Energy Storage Nanocomposites

Core-shell TiO2@Au Nanofibers Derived from a Unique Physical Coating Strategy for Excellent Capacitive Energy Storage Nanocomposites

Core-shell TiO2@Au Nanofibers Derived from a Unique Physical Coating Strategy for Excellent Capacitive Energy Storage Nanocomposites

Core-shell TiO2@Au Nanofibers Derived from a Unique Physical Coating Strategy for Excellent Capacitive Energy Storage Nanocomposites

Polymer dielectrics have been widely employed in pulsed power systems, but their applications are severely restricted by the low energy density. Incorporating core-shell nanofillers is one promising strategy to enhance the energy density of polymer dielectrics. Nowadays, core-shell nanofillers are mainly prepared via chemical coating strategies, which always involve complex chemical synthesis procedures. Herein, a unique physical coating strategy is developed to prepare core-shell TiO2@Au nanofibers consisting of monodispersed Au nanoparticles homogeneously anchored on the TiO2 nanofibers. Interestingly, the TiO2@Au nanofibers show outstanding dielectric energy storage boosting capability. Specifically, with merely introducing 0.1 wt.% TiO2@Au nanofillers, the TiO2@Au/PVDF composite exhibits a substantially enhanced breakdown strength of 749 MV m−1, which reaches 152.8% of PVDF. Meanwhile, a high dielectric constant of 10.2 (114.1% of PVDF) is obtained. Consequently, an ultrahigh energy density of 18.6 J cm−3, which is 250.1% of PVDF, is achieved. It is further revealed that the significant energy storage boosting effect is originated from the Coulomb blockade and micro-capacitor effects of the TiO2@Au nanofibers. This work establishes a unique paradigm for the facile preparation of core-shell nanomaterials, which have huge potential for both dielectric energy storage and other functional nanocomposites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信