关于具有时变延迟的 KdV-KdV 系统的边界稳定问题

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Roberto de A. Capistrano-Filho , Boumediène Chentouf , Victor H. Gonzalez Martinez , Juan Ricardo Muñoz
{"title":"关于具有时变延迟的 KdV-KdV 系统的边界稳定问题","authors":"Roberto de A. Capistrano-Filho ,&nbsp;Boumediène Chentouf ,&nbsp;Victor H. Gonzalez Martinez ,&nbsp;Juan Ricardo Muñoz","doi":"10.1016/j.nonrwa.2024.104122","DOIUrl":null,"url":null,"abstract":"<div><p>The boundary stabilization problem of the Boussinesq KdV–KdV type system is investigated in this paper. An appropriate boundary feedback law consisting of a linear combination of a damping mechanism and a delay term is designed. Then, considering time-varying delay feedback together with a smallness restriction on the length of the spatial domain and the initial data, we show that the problem under consideration is well-posed. The proof combines Kato’s approach and the fixed-point argument. Last but not least, we prove that the energy of the linearized KdV–KdV system decays exponentially by employing the Lyapunov method.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the boundary stabilization of the KdV–KdV system with time-dependent delay\",\"authors\":\"Roberto de A. Capistrano-Filho ,&nbsp;Boumediène Chentouf ,&nbsp;Victor H. Gonzalez Martinez ,&nbsp;Juan Ricardo Muñoz\",\"doi\":\"10.1016/j.nonrwa.2024.104122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The boundary stabilization problem of the Boussinesq KdV–KdV type system is investigated in this paper. An appropriate boundary feedback law consisting of a linear combination of a damping mechanism and a delay term is designed. Then, considering time-varying delay feedback together with a smallness restriction on the length of the spatial domain and the initial data, we show that the problem under consideration is well-posed. The proof combines Kato’s approach and the fixed-point argument. Last but not least, we prove that the energy of the linearized KdV–KdV system decays exponentially by employing the Lyapunov method.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824000622\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824000622","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了 Boussinesq KdV-KdV 型系统的边界稳定问题。本文设计了由阻尼机制和延迟项的线性组合组成的适当边界反馈定律。然后,考虑到时变延迟反馈以及对空间域长度和初始数据的小限制,我们证明了所考虑的问题是很好解决的。证明结合了加藤方法和定点论证。最后,我们利用 Lyapunov 方法证明了线性化 KdV-KdV 系统的能量呈指数衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the boundary stabilization of the KdV–KdV system with time-dependent delay

The boundary stabilization problem of the Boussinesq KdV–KdV type system is investigated in this paper. An appropriate boundary feedback law consisting of a linear combination of a damping mechanism and a delay term is designed. Then, considering time-varying delay feedback together with a smallness restriction on the length of the spatial domain and the initial data, we show that the problem under consideration is well-posed. The proof combines Kato’s approach and the fixed-point argument. Last but not least, we prove that the energy of the linearized KdV–KdV system decays exponentially by employing the Lyapunov method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信