{"title":"半潜式风能水产养殖综合结构在规则和不规则波浪下的动态响应","authors":"Zhen-Qiang Jiang , Chun-Wei Bi , Lian-Xin Xin","doi":"10.1016/j.aquaeng.2024.102412","DOIUrl":null,"url":null,"abstract":"<div><p>Offshore aquaculture has expanded significantly, and offshore wind energy is more abundant and stable than it is on land. The integration of aquaculture facilities and offshore wind-turbine technology to build a comprehensive platform has both scientific and theoretical significance. To further investigate an integrated wind-energy and aquaculture structure and its dynamic response characteristics, we performed physical model experiments to investigate the motion response properties of the new wind-energy-aquaculture integrated structure. Regular and irregular wave experiments were conducted on a wave flume. The motion responses and mooring line tensions of the platform modules were obtained. Under regular wave conditions, the three degree-of-freedom motion response of the model under two different mooring configurations exhibit the similar trend as the wave height and wave frequency increased. The heave responses under different mooring configurations were generally consistent, whereas the surge responses exhibited low-frequency characteristics. The mooring line tensions of the taut mooring configuration changed significantly with the wave parameters, whereas those with catenary mooring exhibited minor changes. Under irregular wave conditions, structures with catenary mooring systems exhibited smaller motion responses, thereby maintaining their stability.</p></div>","PeriodicalId":8120,"journal":{"name":"Aquacultural Engineering","volume":"106 ","pages":"Article 102412"},"PeriodicalIF":3.6000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic responses of a semi-submersible integrated wind-energy-aquaculture structure under regular and irregular waves\",\"authors\":\"Zhen-Qiang Jiang , Chun-Wei Bi , Lian-Xin Xin\",\"doi\":\"10.1016/j.aquaeng.2024.102412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Offshore aquaculture has expanded significantly, and offshore wind energy is more abundant and stable than it is on land. The integration of aquaculture facilities and offshore wind-turbine technology to build a comprehensive platform has both scientific and theoretical significance. To further investigate an integrated wind-energy and aquaculture structure and its dynamic response characteristics, we performed physical model experiments to investigate the motion response properties of the new wind-energy-aquaculture integrated structure. Regular and irregular wave experiments were conducted on a wave flume. The motion responses and mooring line tensions of the platform modules were obtained. Under regular wave conditions, the three degree-of-freedom motion response of the model under two different mooring configurations exhibit the similar trend as the wave height and wave frequency increased. The heave responses under different mooring configurations were generally consistent, whereas the surge responses exhibited low-frequency characteristics. The mooring line tensions of the taut mooring configuration changed significantly with the wave parameters, whereas those with catenary mooring exhibited minor changes. Under irregular wave conditions, structures with catenary mooring systems exhibited smaller motion responses, thereby maintaining their stability.</p></div>\",\"PeriodicalId\":8120,\"journal\":{\"name\":\"Aquacultural Engineering\",\"volume\":\"106 \",\"pages\":\"Article 102412\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquacultural Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0144860924000232\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquacultural Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144860924000232","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Dynamic responses of a semi-submersible integrated wind-energy-aquaculture structure under regular and irregular waves
Offshore aquaculture has expanded significantly, and offshore wind energy is more abundant and stable than it is on land. The integration of aquaculture facilities and offshore wind-turbine technology to build a comprehensive platform has both scientific and theoretical significance. To further investigate an integrated wind-energy and aquaculture structure and its dynamic response characteristics, we performed physical model experiments to investigate the motion response properties of the new wind-energy-aquaculture integrated structure. Regular and irregular wave experiments were conducted on a wave flume. The motion responses and mooring line tensions of the platform modules were obtained. Under regular wave conditions, the three degree-of-freedom motion response of the model under two different mooring configurations exhibit the similar trend as the wave height and wave frequency increased. The heave responses under different mooring configurations were generally consistent, whereas the surge responses exhibited low-frequency characteristics. The mooring line tensions of the taut mooring configuration changed significantly with the wave parameters, whereas those with catenary mooring exhibited minor changes. Under irregular wave conditions, structures with catenary mooring systems exhibited smaller motion responses, thereby maintaining their stability.
期刊介绍:
Aquacultural Engineering is concerned with the design and development of effective aquacultural systems for marine and freshwater facilities. The journal aims to apply the knowledge gained from basic research which potentially can be translated into commercial operations.
Problems of scale-up and application of research data involve many parameters, both physical and biological, making it difficult to anticipate the interaction between the unit processes and the cultured animals. Aquacultural Engineering aims to develop this bioengineering interface for aquaculture and welcomes contributions in the following areas:
– Engineering and design of aquaculture facilities
– Engineering-based research studies
– Construction experience and techniques
– In-service experience, commissioning, operation
– Materials selection and their uses
– Quantification of biological data and constraints