Mondli Abednicko Masanabo, Amélie Tribot, Enni Luoma, Jussi Virkajärvi, Nusrat Sharmin, Morten Sivertsvik, Suprakas Sinha Ray, Janne Keränen, M. Naushad Emmambux
{"title":"以豇豆木质纤维素纤维为填充物,通过注塑成型和挤压铸膜技术开发聚(丁二酸丁二醇酯-己二酸丁二醇酯)/聚(3-羟基丁酸酯-3-羟基戊酸酯)并确定其特性","authors":"Mondli Abednicko Masanabo, Amélie Tribot, Enni Luoma, Jussi Virkajärvi, Nusrat Sharmin, Morten Sivertsvik, Suprakas Sinha Ray, Janne Keränen, M. Naushad Emmambux","doi":"10.1002/mame.202400037","DOIUrl":null,"url":null,"abstract":"<p>Biodegradable poly(butylene succinate-<i>co</i>-adipate)/Poly(3-hydroxybutyrate-<i>co</i>-3-hydoxyvalerate) (PBSA/PHBV) filled with lignocellulosic sidestream/fibers from cowpea, a neglected and underutilized African crop are produced by injection molding and extrusion film casting. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) suggests that the fibers have more affinity and interfacial interaction with PBSA than PHBV. This is shown by a decrease in dampening of PBSA and an increase in dampening of PHBV with fiber addition. In addition, fiber addition results in more homogeneous crystal morphology of PBSA, while resulting in more heterogeneous crystal morphology of PHBV. The tensile strength of injection molded bio-composites increases with fiber addition due to good interfacial adhesion between the matrix and fibers revealed by scanning electron microscope. In contrast, the tensile strength of bio-composite films decreases with fiber addition due to the high-volume fraction of pores in bio-composite films that act as stress raisers. The stiffness of both injection molded, and bio-composite films increase with fiber addition, as revealed by an increase in Young's modulus and storage modulus, while the tensile strain decreases. In conclusion, low-value cowpea sidestream can be used as a filler to produce injection molded bio-composites and bio-composite films for potential application as rigid and flexible packaging.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 8","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400037","citationCount":"0","resultStr":"{\"title\":\"Development and Characterization of Poly(butylene succinate-co-adipate)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with Cowpea Lignocellulosic Fibers as a Filler via Injection Molding and Extrusion Film-Casting\",\"authors\":\"Mondli Abednicko Masanabo, Amélie Tribot, Enni Luoma, Jussi Virkajärvi, Nusrat Sharmin, Morten Sivertsvik, Suprakas Sinha Ray, Janne Keränen, M. Naushad Emmambux\",\"doi\":\"10.1002/mame.202400037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biodegradable poly(butylene succinate-<i>co</i>-adipate)/Poly(3-hydroxybutyrate-<i>co</i>-3-hydoxyvalerate) (PBSA/PHBV) filled with lignocellulosic sidestream/fibers from cowpea, a neglected and underutilized African crop are produced by injection molding and extrusion film casting. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) suggests that the fibers have more affinity and interfacial interaction with PBSA than PHBV. This is shown by a decrease in dampening of PBSA and an increase in dampening of PHBV with fiber addition. In addition, fiber addition results in more homogeneous crystal morphology of PBSA, while resulting in more heterogeneous crystal morphology of PHBV. The tensile strength of injection molded bio-composites increases with fiber addition due to good interfacial adhesion between the matrix and fibers revealed by scanning electron microscope. In contrast, the tensile strength of bio-composite films decreases with fiber addition due to the high-volume fraction of pores in bio-composite films that act as stress raisers. The stiffness of both injection molded, and bio-composite films increase with fiber addition, as revealed by an increase in Young's modulus and storage modulus, while the tensile strain decreases. In conclusion, low-value cowpea sidestream can be used as a filler to produce injection molded bio-composites and bio-composite films for potential application as rigid and flexible packaging.</p>\",\"PeriodicalId\":18151,\"journal\":{\"name\":\"Macromolecular Materials and Engineering\",\"volume\":\"309 8\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400037\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Materials and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400037\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400037","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Development and Characterization of Poly(butylene succinate-co-adipate)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with Cowpea Lignocellulosic Fibers as a Filler via Injection Molding and Extrusion Film-Casting
Biodegradable poly(butylene succinate-co-adipate)/Poly(3-hydroxybutyrate-co-3-hydoxyvalerate) (PBSA/PHBV) filled with lignocellulosic sidestream/fibers from cowpea, a neglected and underutilized African crop are produced by injection molding and extrusion film casting. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) suggests that the fibers have more affinity and interfacial interaction with PBSA than PHBV. This is shown by a decrease in dampening of PBSA and an increase in dampening of PHBV with fiber addition. In addition, fiber addition results in more homogeneous crystal morphology of PBSA, while resulting in more heterogeneous crystal morphology of PHBV. The tensile strength of injection molded bio-composites increases with fiber addition due to good interfacial adhesion between the matrix and fibers revealed by scanning electron microscope. In contrast, the tensile strength of bio-composite films decreases with fiber addition due to the high-volume fraction of pores in bio-composite films that act as stress raisers. The stiffness of both injection molded, and bio-composite films increase with fiber addition, as revealed by an increase in Young's modulus and storage modulus, while the tensile strain decreases. In conclusion, low-value cowpea sidestream can be used as a filler to produce injection molded bio-composites and bio-composite films for potential application as rigid and flexible packaging.
期刊介绍:
Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications.
Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science.
The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments.
ISSN: 1438-7492 (print). 1439-2054 (online).
Readership:Polymer scientists, chemists, physicists, materials scientists, engineers
Abstracting and Indexing Information:
CAS: Chemical Abstracts Service (ACS)
CCR Database (Clarivate Analytics)
Chemical Abstracts Service/SciFinder (ACS)
Chemistry Server Reaction Center (Clarivate Analytics)
ChemWeb (ChemIndustry.com)
Chimica Database (Elsevier)
COMPENDEX (Elsevier)
Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics)
Directory of Open Access Journals (DOAJ)
INSPEC (IET)
Journal Citation Reports/Science Edition (Clarivate Analytics)
Materials Science & Engineering Database (ProQuest)
PASCAL Database (INIST/CNRS)
Polymer Library (iSmithers RAPRA)
Reaction Citation Index (Clarivate Analytics)
Science Citation Index (Clarivate Analytics)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
SCOPUS (Elsevier)
Technology Collection (ProQuest)
Web of Science (Clarivate Analytics)