高抗性淀粉多谷物面粉的制备及其提高抗消化性的机理

Starch Pub Date : 2024-03-28 DOI:10.1002/star.202300301
Qianying Ma, Xiaolong Wang, Xiaoyang Zou, Xinyu Zhang, Liang Zou, Xinzhong Hu
{"title":"高抗性淀粉多谷物面粉的制备及其提高抗消化性的机理","authors":"Qianying Ma, Xiaolong Wang, Xiaoyang Zou, Xinyu Zhang, Liang Zou, Xinzhong Hu","doi":"10.1002/star.202300301","DOIUrl":null,"url":null,"abstract":"To acquire the optimum treatment strategy that leads to the highest yield of resistant starch (RS) in multigrain flour (MF), wheat flour, whole oat flour, and whole buckwheat flour are used to prepare antidigestive MF by using pullulanase debranching combining heat–moisture treatment (P‐HMT). Based on the single factor tests and response surface analysis, the optimum conditions for the treatment of MF are determined as follows: pullulanase 62.6 U g<jats:sup>−1</jats:sup>, autoclaving 21.3 min, HMT at 100 °C, and 30.4% water content for 6.0 h. Under these conditions, the yield of RS in the flour reaches 77.42%. P‐HMT causes protein denaturation, starch gelatinization, and flour clumps in MF, facilitating starch recrystallization and interactions among short‐chain starch, monomeric proteins, and lipids. All these findings are further confirmed by the conversion of starch crystal from A‐type to B+V‐type, the improvement of starch short‐range molecular order, and the presence of more binary/ternary complexes in treated flour. In brief, the starch digestion resistance improvement in the treated flour is attributed to the recrystallization of short‐chain starch and interactions between starch and protein/lipid.","PeriodicalId":501569,"journal":{"name":"Starch","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of Multi‐Grain Flour with High Content of Resistant Starch and the Mechanism Underlying the Improved Digestion Resistance\",\"authors\":\"Qianying Ma, Xiaolong Wang, Xiaoyang Zou, Xinyu Zhang, Liang Zou, Xinzhong Hu\",\"doi\":\"10.1002/star.202300301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To acquire the optimum treatment strategy that leads to the highest yield of resistant starch (RS) in multigrain flour (MF), wheat flour, whole oat flour, and whole buckwheat flour are used to prepare antidigestive MF by using pullulanase debranching combining heat–moisture treatment (P‐HMT). Based on the single factor tests and response surface analysis, the optimum conditions for the treatment of MF are determined as follows: pullulanase 62.6 U g<jats:sup>−1</jats:sup>, autoclaving 21.3 min, HMT at 100 °C, and 30.4% water content for 6.0 h. Under these conditions, the yield of RS in the flour reaches 77.42%. P‐HMT causes protein denaturation, starch gelatinization, and flour clumps in MF, facilitating starch recrystallization and interactions among short‐chain starch, monomeric proteins, and lipids. All these findings are further confirmed by the conversion of starch crystal from A‐type to B+V‐type, the improvement of starch short‐range molecular order, and the presence of more binary/ternary complexes in treated flour. In brief, the starch digestion resistance improvement in the treated flour is attributed to the recrystallization of short‐chain starch and interactions between starch and protein/lipid.\",\"PeriodicalId\":501569,\"journal\":{\"name\":\"Starch\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Starch\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/star.202300301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Starch","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/star.202300301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了获得能使多谷物面粉(MF)中抗性淀粉(RS)产量最高的最佳处理策略,研究人员用小麦粉、燕麦全粉和荞麦全粉制备抗消化性多谷物面粉(MF),并采用拉断酶去支链结合热水分处理(P-HMT)的方法。根据单因素试验和响应面分析,确定了处理 MF 的最佳条件如下:拉丙聚糖酶 62.6 U g-1、高压灭菌 21.3 分钟、热湿处理温度 100 °C、含水量 30.4%、时间 6.0 小时。P-HMT 会导致蛋白质变性、淀粉糊化和面粉在 MF 中结块,促进淀粉重结晶以及短链淀粉、单体蛋白质和脂质之间的相互作用。淀粉晶体从 A 型转变为 B+V 型,淀粉短程分子秩序得到改善,处理后的面粉中出现了更多的二元/三元复合物,这些都进一步证实了上述结论。简而言之,处理过的面粉中淀粉抗消化性的改善归因于短链淀粉的再结晶以及淀粉与蛋白质/脂质之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Preparation of Multi‐Grain Flour with High Content of Resistant Starch and the Mechanism Underlying the Improved Digestion Resistance

Preparation of Multi‐Grain Flour with High Content of Resistant Starch and the Mechanism Underlying the Improved Digestion Resistance
To acquire the optimum treatment strategy that leads to the highest yield of resistant starch (RS) in multigrain flour (MF), wheat flour, whole oat flour, and whole buckwheat flour are used to prepare antidigestive MF by using pullulanase debranching combining heat–moisture treatment (P‐HMT). Based on the single factor tests and response surface analysis, the optimum conditions for the treatment of MF are determined as follows: pullulanase 62.6 U g−1, autoclaving 21.3 min, HMT at 100 °C, and 30.4% water content for 6.0 h. Under these conditions, the yield of RS in the flour reaches 77.42%. P‐HMT causes protein denaturation, starch gelatinization, and flour clumps in MF, facilitating starch recrystallization and interactions among short‐chain starch, monomeric proteins, and lipids. All these findings are further confirmed by the conversion of starch crystal from A‐type to B+V‐type, the improvement of starch short‐range molecular order, and the presence of more binary/ternary complexes in treated flour. In brief, the starch digestion resistance improvement in the treated flour is attributed to the recrystallization of short‐chain starch and interactions between starch and protein/lipid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信