{"title":"单元群下同质乘法算子的换元组","authors":"Soumitra Ghara, Surjit Kumar, Gadadhar Misra, Paramita Pramanick","doi":"10.1112/jlms.12890","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mi>U</mi>\n <mo>(</mo>\n <mi>d</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {U}(d)$</annotation>\n </semantics></math> be the group of <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>×</mo>\n <mi>d</mi>\n </mrow>\n <annotation>$d\\times d$</annotation>\n </semantics></math> unitary matrices. We find conditions to ensure that a <span></span><math>\n <semantics>\n <mrow>\n <mi>U</mi>\n <mo>(</mo>\n <mi>d</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {U}(d)$</annotation>\n </semantics></math>-homogeneous <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math>-tuple <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$\\bm{T}$</annotation>\n </semantics></math> is unitarily equivalent to multiplication by the coordinate functions on some reproducing kernel Hilbert space <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mi>K</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>B</mi>\n <mi>d</mi>\n </msub>\n <mo>,</mo>\n <msup>\n <mi>C</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n <mo>⊆</mo>\n <mtext>Hol</mtext>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>B</mi>\n <mi>d</mi>\n </msub>\n <mo>,</mo>\n <msup>\n <mi>C</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {H}_K(\\mathbb {B}_d, \\mathbb {C}^n) \\subseteq \\mbox{\\rm Hol}(\\mathbb {B}_d, \\mathbb {C}^n)$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mo>dim</mo>\n <msubsup>\n <mo>∩</mo>\n <mrow>\n <mi>j</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <mi>d</mi>\n </msubsup>\n <mo>ker</mo>\n <msubsup>\n <mi>T</mi>\n <mi>j</mi>\n <mo>∗</mo>\n </msubsup>\n </mrow>\n <annotation>$n= \\dim \\cap _{j=1}^d \\ker T^*_{j}$</annotation>\n </semantics></math>. We describe this class of <span></span><math>\n <semantics>\n <mrow>\n <mi>U</mi>\n <mo>(</mo>\n <mi>d</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {U}(d)$</annotation>\n </semantics></math>-homogeneous operators, equivalently, nonnegative kernels <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> quasi-invariant under the action of <span></span><math>\n <semantics>\n <mrow>\n <mi>U</mi>\n <mo>(</mo>\n <mi>d</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {U}(d)$</annotation>\n </semantics></math>. We classify quasi-invariant kernels <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> transforming under <span></span><math>\n <semantics>\n <mrow>\n <mi>U</mi>\n <mo>(</mo>\n <mi>d</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {U}(d)$</annotation>\n </semantics></math> with two specific choice of multipliers. A crucial ingredient of the proof is that the group <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mi>U</mi>\n <mo>(</mo>\n <mi>d</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$SU(d)$</annotation>\n </semantics></math> has exactly two inequivalent irreducible unitary representations of dimension <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math> and none in dimensions <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <mi>d</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$2, \\ldots , d-1$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$d\\geqslant 3$</annotation>\n </semantics></math>. We obtain explicit criterion for boundedness, reducibility, and mutual unitary equivalence among these operators.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Commuting tuple of multiplication operators homogeneous under the unitary group\",\"authors\":\"Soumitra Ghara, Surjit Kumar, Gadadhar Misra, Paramita Pramanick\",\"doi\":\"10.1112/jlms.12890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>U</mi>\\n <mo>(</mo>\\n <mi>d</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathcal {U}(d)$</annotation>\\n </semantics></math> be the group of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>×</mo>\\n <mi>d</mi>\\n </mrow>\\n <annotation>$d\\\\times d$</annotation>\\n </semantics></math> unitary matrices. We find conditions to ensure that a <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>U</mi>\\n <mo>(</mo>\\n <mi>d</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathcal {U}(d)$</annotation>\\n </semantics></math>-homogeneous <span></span><math>\\n <semantics>\\n <mi>d</mi>\\n <annotation>$d$</annotation>\\n </semantics></math>-tuple <span></span><math>\\n <semantics>\\n <mi>T</mi>\\n <annotation>$\\\\bm{T}$</annotation>\\n </semantics></math> is unitarily equivalent to multiplication by the coordinate functions on some reproducing kernel Hilbert space <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>H</mi>\\n <mi>K</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>B</mi>\\n <mi>d</mi>\\n </msub>\\n <mo>,</mo>\\n <msup>\\n <mi>C</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <mo>⊆</mo>\\n <mtext>Hol</mtext>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>B</mi>\\n <mi>d</mi>\\n </msub>\\n <mo>,</mo>\\n <msup>\\n <mi>C</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathcal {H}_K(\\\\mathbb {B}_d, \\\\mathbb {C}^n) \\\\subseteq \\\\mbox{\\\\rm Hol}(\\\\mathbb {B}_d, \\\\mathbb {C}^n)$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>=</mo>\\n <mo>dim</mo>\\n <msubsup>\\n <mo>∩</mo>\\n <mrow>\\n <mi>j</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <mi>d</mi>\\n </msubsup>\\n <mo>ker</mo>\\n <msubsup>\\n <mi>T</mi>\\n <mi>j</mi>\\n <mo>∗</mo>\\n </msubsup>\\n </mrow>\\n <annotation>$n= \\\\dim \\\\cap _{j=1}^d \\\\ker T^*_{j}$</annotation>\\n </semantics></math>. We describe this class of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>U</mi>\\n <mo>(</mo>\\n <mi>d</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathcal {U}(d)$</annotation>\\n </semantics></math>-homogeneous operators, equivalently, nonnegative kernels <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math> quasi-invariant under the action of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>U</mi>\\n <mo>(</mo>\\n <mi>d</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathcal {U}(d)$</annotation>\\n </semantics></math>. We classify quasi-invariant kernels <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math> transforming under <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>U</mi>\\n <mo>(</mo>\\n <mi>d</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathcal {U}(d)$</annotation>\\n </semantics></math> with two specific choice of multipliers. A crucial ingredient of the proof is that the group <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n <mi>U</mi>\\n <mo>(</mo>\\n <mi>d</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$SU(d)$</annotation>\\n </semantics></math> has exactly two inequivalent irreducible unitary representations of dimension <span></span><math>\\n <semantics>\\n <mi>d</mi>\\n <annotation>$d$</annotation>\\n </semantics></math> and none in dimensions <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mtext>…</mtext>\\n <mo>,</mo>\\n <mi>d</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$2, \\\\ldots , d-1$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>⩾</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$d\\\\geqslant 3$</annotation>\\n </semantics></math>. We obtain explicit criterion for boundedness, reducibility, and mutual unitary equivalence among these operators.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12890\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12890","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
让 U ( d ) $\mathcal {U}(d)$ 是 d × d $d\times d$ 单元矩阵群。我们要找到一些条件,以确保 U ( d ) $mathcal {U}(d)$ -homogeneous d $d$ -tuple T $\bm{T}$ 与某个重现核 Hilbert 空间 H K ( B d , C n ) 上的坐标函数相乘是单位等价的。 ⊆ Hol ( B d , C n ) $\mathcal {H}_K(\mathbb {B}_d, \mathbb {C}^n) \subseteq \mbox\rm Hol}(\mathbb {B}_d, \mathbb {C}^n)$ 、 n = dim ∩ j = 1 d ker T j∗ $n= \dim \cap _{j=1}^d \ker T^*_{j}$ 。我们描述这一类 U ( d ) $\mathcal {U}(d)$ -同调算子,等价地,非负核 K $K$ 在 U ( d ) $\mathcal {U}(d)$ 作用下准不变。我们将在 U ( d ) $mathcal {U}(d)$ 作用下变换的准不变核 K $K$ 用两种特定的乘数选择进行分类。证明的一个关键要素是群 S U ( d ) $SU(d)$ 在维数为 d $d$ 的情况下有两个不等价的不可还原单元表示,而在维数为 2 , ... , d - 1 $2, \ldots , d-1$ , d ⩾ 3 $d\geqslant 3$ 的情况下没有。我们得到了这些算子的有界性、可还原性和相互单元等价性的明确标准。
Commuting tuple of multiplication operators homogeneous under the unitary group
Let be the group of unitary matrices. We find conditions to ensure that a -homogeneous -tuple is unitarily equivalent to multiplication by the coordinate functions on some reproducing kernel Hilbert space , . We describe this class of -homogeneous operators, equivalently, nonnegative kernels quasi-invariant under the action of . We classify quasi-invariant kernels transforming under with two specific choice of multipliers. A crucial ingredient of the proof is that the group has exactly two inequivalent irreducible unitary representations of dimension and none in dimensions , . We obtain explicit criterion for boundedness, reducibility, and mutual unitary equivalence among these operators.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.