树宽有界的弦图

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Jordi Castellví , Michael Drmota , Marc Noy , Clément Requilé
{"title":"树宽有界的弦图","authors":"Jordi Castellví ,&nbsp;Michael Drmota ,&nbsp;Marc Noy ,&nbsp;Clément Requilé","doi":"10.1016/j.aam.2024.102700","DOIUrl":null,"url":null,"abstract":"<div><p>Given <span><math><mi>t</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mn>0</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>t</mi></math></span>, we prove that the number of labelled <em>k</em>-connected chordal graphs with <em>n</em> vertices and tree-width at most <em>t</em> is asymptotically <span><math><mi>c</mi><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>5</mn><mo>/</mo><mn>2</mn></mrow></msup><msup><mrow><mi>γ</mi></mrow><mrow><mi>n</mi></mrow></msup><mi>n</mi><mo>!</mo></math></span>, as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>, for some constants <span><math><mi>c</mi><mo>,</mo><mi>γ</mi><mo>&gt;</mo><mn>0</mn></math></span> depending on <em>t</em> and <em>k</em>. Additionally, we show that the number of <em>i</em>-cliques (<span><math><mn>2</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>t</mi></math></span>) in a uniform random <em>k</em>-connected chordal graph with tree-width at most <em>t</em> is normally distributed as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>.</p><p>The asymptotic enumeration of graphs of tree-width at most <em>t</em> is wide open for <span><math><mi>t</mi><mo>≥</mo><mn>3</mn></math></span>. To the best of our knowledge, this is the first non-trivial class of graphs with bounded tree-width where the asymptotic counting problem is solved. Our starting point is the work of Wormald (1985) <span>[21]</span>, were an algorithm is developed to obtain the exact number of labelled chordal graphs on <em>n</em> vertices.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chordal graphs with bounded tree-width\",\"authors\":\"Jordi Castellví ,&nbsp;Michael Drmota ,&nbsp;Marc Noy ,&nbsp;Clément Requilé\",\"doi\":\"10.1016/j.aam.2024.102700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given <span><math><mi>t</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mn>0</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>t</mi></math></span>, we prove that the number of labelled <em>k</em>-connected chordal graphs with <em>n</em> vertices and tree-width at most <em>t</em> is asymptotically <span><math><mi>c</mi><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>5</mn><mo>/</mo><mn>2</mn></mrow></msup><msup><mrow><mi>γ</mi></mrow><mrow><mi>n</mi></mrow></msup><mi>n</mi><mo>!</mo></math></span>, as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>, for some constants <span><math><mi>c</mi><mo>,</mo><mi>γ</mi><mo>&gt;</mo><mn>0</mn></math></span> depending on <em>t</em> and <em>k</em>. Additionally, we show that the number of <em>i</em>-cliques (<span><math><mn>2</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>t</mi></math></span>) in a uniform random <em>k</em>-connected chordal graph with tree-width at most <em>t</em> is normally distributed as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>.</p><p>The asymptotic enumeration of graphs of tree-width at most <em>t</em> is wide open for <span><math><mi>t</mi><mo>≥</mo><mn>3</mn></math></span>. To the best of our knowledge, this is the first non-trivial class of graphs with bounded tree-width where the asymptotic counting problem is solved. Our starting point is the work of Wormald (1985) <span>[21]</span>, were an algorithm is developed to obtain the exact number of labelled chordal graphs on <em>n</em> vertices.</p></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885824000319\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824000319","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

给定 t≥2 和 0≤k≤t,我们证明了具有 n 个顶点且树宽最多为 t 的标记 k 连接弦图的数量渐近为 cn-5/2γnn!、此外,我们还证明了树宽最多为 t 的均匀随机 k 连接弦图中的 i 层(2≤i≤t)数目呈正态分布,即 n→∞。据我们所知,这是第一类解决了渐近计数问题的有界树宽的非三维图。我们的出发点是 Wormald(1985 年)[21] 的研究成果,其中提出了一种算法,用于求得 n 个顶点上有标签的弦图的精确数目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chordal graphs with bounded tree-width

Given t2 and 0kt, we prove that the number of labelled k-connected chordal graphs with n vertices and tree-width at most t is asymptotically cn5/2γnn!, as n, for some constants c,γ>0 depending on t and k. Additionally, we show that the number of i-cliques (2it) in a uniform random k-connected chordal graph with tree-width at most t is normally distributed as n.

The asymptotic enumeration of graphs of tree-width at most t is wide open for t3. To the best of our knowledge, this is the first non-trivial class of graphs with bounded tree-width where the asymptotic counting problem is solved. Our starting point is the work of Wormald (1985) [21], were an algorithm is developed to obtain the exact number of labelled chordal graphs on n vertices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信