Jordi Castellví , Michael Drmota , Marc Noy , Clément Requilé
{"title":"树宽有界的弦图","authors":"Jordi Castellví , Michael Drmota , Marc Noy , Clément Requilé","doi":"10.1016/j.aam.2024.102700","DOIUrl":null,"url":null,"abstract":"<div><p>Given <span><math><mi>t</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mn>0</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>t</mi></math></span>, we prove that the number of labelled <em>k</em>-connected chordal graphs with <em>n</em> vertices and tree-width at most <em>t</em> is asymptotically <span><math><mi>c</mi><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>5</mn><mo>/</mo><mn>2</mn></mrow></msup><msup><mrow><mi>γ</mi></mrow><mrow><mi>n</mi></mrow></msup><mi>n</mi><mo>!</mo></math></span>, as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>, for some constants <span><math><mi>c</mi><mo>,</mo><mi>γ</mi><mo>></mo><mn>0</mn></math></span> depending on <em>t</em> and <em>k</em>. Additionally, we show that the number of <em>i</em>-cliques (<span><math><mn>2</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>t</mi></math></span>) in a uniform random <em>k</em>-connected chordal graph with tree-width at most <em>t</em> is normally distributed as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>.</p><p>The asymptotic enumeration of graphs of tree-width at most <em>t</em> is wide open for <span><math><mi>t</mi><mo>≥</mo><mn>3</mn></math></span>. To the best of our knowledge, this is the first non-trivial class of graphs with bounded tree-width where the asymptotic counting problem is solved. Our starting point is the work of Wormald (1985) <span>[21]</span>, were an algorithm is developed to obtain the exact number of labelled chordal graphs on <em>n</em> vertices.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chordal graphs with bounded tree-width\",\"authors\":\"Jordi Castellví , Michael Drmota , Marc Noy , Clément Requilé\",\"doi\":\"10.1016/j.aam.2024.102700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given <span><math><mi>t</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mn>0</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>t</mi></math></span>, we prove that the number of labelled <em>k</em>-connected chordal graphs with <em>n</em> vertices and tree-width at most <em>t</em> is asymptotically <span><math><mi>c</mi><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>5</mn><mo>/</mo><mn>2</mn></mrow></msup><msup><mrow><mi>γ</mi></mrow><mrow><mi>n</mi></mrow></msup><mi>n</mi><mo>!</mo></math></span>, as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>, for some constants <span><math><mi>c</mi><mo>,</mo><mi>γ</mi><mo>></mo><mn>0</mn></math></span> depending on <em>t</em> and <em>k</em>. Additionally, we show that the number of <em>i</em>-cliques (<span><math><mn>2</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>t</mi></math></span>) in a uniform random <em>k</em>-connected chordal graph with tree-width at most <em>t</em> is normally distributed as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>.</p><p>The asymptotic enumeration of graphs of tree-width at most <em>t</em> is wide open for <span><math><mi>t</mi><mo>≥</mo><mn>3</mn></math></span>. To the best of our knowledge, this is the first non-trivial class of graphs with bounded tree-width where the asymptotic counting problem is solved. Our starting point is the work of Wormald (1985) <span>[21]</span>, were an algorithm is developed to obtain the exact number of labelled chordal graphs on <em>n</em> vertices.</p></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885824000319\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824000319","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
给定 t≥2 和 0≤k≤t,我们证明了具有 n 个顶点且树宽最多为 t 的标记 k 连接弦图的数量渐近为 cn-5/2γnn!、此外,我们还证明了树宽最多为 t 的均匀随机 k 连接弦图中的 i 层(2≤i≤t)数目呈正态分布,即 n→∞。据我们所知,这是第一类解决了渐近计数问题的有界树宽的非三维图。我们的出发点是 Wormald(1985 年)[21] 的研究成果,其中提出了一种算法,用于求得 n 个顶点上有标签的弦图的精确数目。
Given and , we prove that the number of labelled k-connected chordal graphs with n vertices and tree-width at most t is asymptotically , as , for some constants depending on t and k. Additionally, we show that the number of i-cliques () in a uniform random k-connected chordal graph with tree-width at most t is normally distributed as .
The asymptotic enumeration of graphs of tree-width at most t is wide open for . To the best of our knowledge, this is the first non-trivial class of graphs with bounded tree-width where the asymptotic counting problem is solved. Our starting point is the work of Wormald (1985) [21], were an algorithm is developed to obtain the exact number of labelled chordal graphs on n vertices.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.