Rakib Hossen , Md. Selim Hossain , Sabbir Ahmed , Md. Mahfujur Rahman , Shuvo Sen
{"title":"利用太赫兹光谱光子晶体光纤传感器感测非法食品化学物质","authors":"Rakib Hossen , Md. Selim Hossain , Sabbir Ahmed , Md. Mahfujur Rahman , Shuvo Sen","doi":"10.1016/j.sbsr.2024.100643","DOIUrl":null,"url":null,"abstract":"<div><p>The method by which a photonic crystal is manufactured fiber is detailed throughout the subsequent undertaking, containing a hexahedron core and hazardous dietary additives using a hexagonal cladding. Saccharine, sorbitol, and butyl acetate are used as analytes for sensing purposes. The sensor contains five tiers of circular ventilation holes within the hexagonal framework, as well as two tiers of hexahedron circles in the central area. FEM (Finite Element Method) is implemented in the sensor design of COMSOL software version 4.2. We noticed the response of the PCF sensor to the specific substances. We examined key optical metrics encompassing specifications including <em>V</em>-parameter, Relational sensitivity, effective refractive index, and power fraction to assess the suitability of the sensor for precisely and effectively detecting various food additives. The revised model attains sensitivity values of 90.10%, 91.30%, and 86.60%, respectively, at a frequency of 1 THz, the identification of saccharine (1.550 in the index of refraction), sorbitol (1.375 in the index of refraction), and butyl acetate (1.394 in the index of refraction) is performed. Furthermore, the compositions of saccharine (1.550 in the index of refraction), sorbitol (1.375 in the index of refraction), and butyl acetate (1.394 in the index of refraction) demonstrate losses from confinement of 6.15 × 10<sup>−8</sup> dB/m, 7.25 × 10<sup>−8</sup> dB/m, and 6.35 × 10<sup>−8</sup> dB/m, which are comparatively minimal, and 0.0235 cm<sup>−1</sup> is an insignificant effective material loss. These structures are studied at the terahertz frequency spectrum. Owing to its superior wave-guiding properties, this proposed sensor can be used for polarization-preserving terahertz wave applications and detecting dangerous food additives. Besides, because of simple fabrication, high sensitivity, and low confinement loss, we strongly believe this optimized geometrical structure will contribute to real-life applications that lead to safer food and support a circular economy in developing countries.</p></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"44 ","pages":"Article 100643"},"PeriodicalIF":5.4000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000254/pdfft?md5=cff90b2010b837e48c7eea3b399a36e5&pid=1-s2.0-S2214180424000254-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Illegal food chemicals sensing with photonic crystal fiber sensor in the terahertz spectrum\",\"authors\":\"Rakib Hossen , Md. Selim Hossain , Sabbir Ahmed , Md. Mahfujur Rahman , Shuvo Sen\",\"doi\":\"10.1016/j.sbsr.2024.100643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The method by which a photonic crystal is manufactured fiber is detailed throughout the subsequent undertaking, containing a hexahedron core and hazardous dietary additives using a hexagonal cladding. Saccharine, sorbitol, and butyl acetate are used as analytes for sensing purposes. The sensor contains five tiers of circular ventilation holes within the hexagonal framework, as well as two tiers of hexahedron circles in the central area. FEM (Finite Element Method) is implemented in the sensor design of COMSOL software version 4.2. We noticed the response of the PCF sensor to the specific substances. We examined key optical metrics encompassing specifications including <em>V</em>-parameter, Relational sensitivity, effective refractive index, and power fraction to assess the suitability of the sensor for precisely and effectively detecting various food additives. The revised model attains sensitivity values of 90.10%, 91.30%, and 86.60%, respectively, at a frequency of 1 THz, the identification of saccharine (1.550 in the index of refraction), sorbitol (1.375 in the index of refraction), and butyl acetate (1.394 in the index of refraction) is performed. Furthermore, the compositions of saccharine (1.550 in the index of refraction), sorbitol (1.375 in the index of refraction), and butyl acetate (1.394 in the index of refraction) demonstrate losses from confinement of 6.15 × 10<sup>−8</sup> dB/m, 7.25 × 10<sup>−8</sup> dB/m, and 6.35 × 10<sup>−8</sup> dB/m, which are comparatively minimal, and 0.0235 cm<sup>−1</sup> is an insignificant effective material loss. These structures are studied at the terahertz frequency spectrum. Owing to its superior wave-guiding properties, this proposed sensor can be used for polarization-preserving terahertz wave applications and detecting dangerous food additives. Besides, because of simple fabrication, high sensitivity, and low confinement loss, we strongly believe this optimized geometrical structure will contribute to real-life applications that lead to safer food and support a circular economy in developing countries.</p></div>\",\"PeriodicalId\":424,\"journal\":{\"name\":\"Sensing and Bio-Sensing Research\",\"volume\":\"44 \",\"pages\":\"Article 100643\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214180424000254/pdfft?md5=cff90b2010b837e48c7eea3b399a36e5&pid=1-s2.0-S2214180424000254-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensing and Bio-Sensing Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214180424000254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180424000254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Illegal food chemicals sensing with photonic crystal fiber sensor in the terahertz spectrum
The method by which a photonic crystal is manufactured fiber is detailed throughout the subsequent undertaking, containing a hexahedron core and hazardous dietary additives using a hexagonal cladding. Saccharine, sorbitol, and butyl acetate are used as analytes for sensing purposes. The sensor contains five tiers of circular ventilation holes within the hexagonal framework, as well as two tiers of hexahedron circles in the central area. FEM (Finite Element Method) is implemented in the sensor design of COMSOL software version 4.2. We noticed the response of the PCF sensor to the specific substances. We examined key optical metrics encompassing specifications including V-parameter, Relational sensitivity, effective refractive index, and power fraction to assess the suitability of the sensor for precisely and effectively detecting various food additives. The revised model attains sensitivity values of 90.10%, 91.30%, and 86.60%, respectively, at a frequency of 1 THz, the identification of saccharine (1.550 in the index of refraction), sorbitol (1.375 in the index of refraction), and butyl acetate (1.394 in the index of refraction) is performed. Furthermore, the compositions of saccharine (1.550 in the index of refraction), sorbitol (1.375 in the index of refraction), and butyl acetate (1.394 in the index of refraction) demonstrate losses from confinement of 6.15 × 10−8 dB/m, 7.25 × 10−8 dB/m, and 6.35 × 10−8 dB/m, which are comparatively minimal, and 0.0235 cm−1 is an insignificant effective material loss. These structures are studied at the terahertz frequency spectrum. Owing to its superior wave-guiding properties, this proposed sensor can be used for polarization-preserving terahertz wave applications and detecting dangerous food additives. Besides, because of simple fabrication, high sensitivity, and low confinement loss, we strongly believe this optimized geometrical structure will contribute to real-life applications that lead to safer food and support a circular economy in developing countries.
期刊介绍:
Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies.
The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.