{"title":"利用概率机器学习预测本科生对教学的评价:激励氛围的重要性","authors":"Brett D. Jones , Kazim Topuz , Sumeyra Sahbaz","doi":"10.1016/j.stueduc.2024.101353","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this study was to understand the complex interactions within a course among motivational climate variables and student evaluations of teaching (SETs) by developing online simulators using probabilistic machine learning. We used data from 2938 undergraduate students in 30 classes to create online simulators based on Bayesian Belief Networks. We created bubble charts, line graphs, and radar charts to show the relationships between the study variables. Findings showed that (a) the motivational climate variables—as measured by the MUSIC Model of Motivation variables—are the largest predictors of SETs, (b) student interest (in the coursework and instructional methods) is the overall largest predictor of SETs, (c) the relationships between the motivational climate variables and SETS are nonlinear, (d) the ease of the course and demographic variables are only weakly associated with SETs, and (e) the largest predictors of instructor and course rating are similar, but somewhat different.</p></div>","PeriodicalId":47539,"journal":{"name":"Studies in Educational Evaluation","volume":"81 ","pages":"Article 101353"},"PeriodicalIF":2.6000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting undergraduate student evaluations of teaching using probabilistic machine learning: The importance of motivational climate\",\"authors\":\"Brett D. Jones , Kazim Topuz , Sumeyra Sahbaz\",\"doi\":\"10.1016/j.stueduc.2024.101353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The purpose of this study was to understand the complex interactions within a course among motivational climate variables and student evaluations of teaching (SETs) by developing online simulators using probabilistic machine learning. We used data from 2938 undergraduate students in 30 classes to create online simulators based on Bayesian Belief Networks. We created bubble charts, line graphs, and radar charts to show the relationships between the study variables. Findings showed that (a) the motivational climate variables—as measured by the MUSIC Model of Motivation variables—are the largest predictors of SETs, (b) student interest (in the coursework and instructional methods) is the overall largest predictor of SETs, (c) the relationships between the motivational climate variables and SETS are nonlinear, (d) the ease of the course and demographic variables are only weakly associated with SETs, and (e) the largest predictors of instructor and course rating are similar, but somewhat different.</p></div>\",\"PeriodicalId\":47539,\"journal\":{\"name\":\"Studies in Educational Evaluation\",\"volume\":\"81 \",\"pages\":\"Article 101353\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Educational Evaluation\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0191491X24000324\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Educational Evaluation","FirstCategoryId":"95","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191491X24000324","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Predicting undergraduate student evaluations of teaching using probabilistic machine learning: The importance of motivational climate
The purpose of this study was to understand the complex interactions within a course among motivational climate variables and student evaluations of teaching (SETs) by developing online simulators using probabilistic machine learning. We used data from 2938 undergraduate students in 30 classes to create online simulators based on Bayesian Belief Networks. We created bubble charts, line graphs, and radar charts to show the relationships between the study variables. Findings showed that (a) the motivational climate variables—as measured by the MUSIC Model of Motivation variables—are the largest predictors of SETs, (b) student interest (in the coursework and instructional methods) is the overall largest predictor of SETs, (c) the relationships between the motivational climate variables and SETS are nonlinear, (d) the ease of the course and demographic variables are only weakly associated with SETs, and (e) the largest predictors of instructor and course rating are similar, but somewhat different.
期刊介绍:
Studies in Educational Evaluation publishes original reports of evaluation studies. Four types of articles are published by the journal: (a) Empirical evaluation studies representing evaluation practice in educational systems around the world; (b) Theoretical reflections and empirical studies related to issues involved in the evaluation of educational programs, educational institutions, educational personnel and student assessment; (c) Articles summarizing the state-of-the-art concerning specific topics in evaluation in general or in a particular country or group of countries; (d) Book reviews and brief abstracts of evaluation studies.