从子域的置换多项式构建置换多项式

IF 1.2 3区 数学 Q1 MATHEMATICS
Lucas Reis , Qiang Wang
{"title":"从子域的置换多项式构建置换多项式","authors":"Lucas Reis ,&nbsp;Qiang Wang","doi":"10.1016/j.ffa.2024.102415","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we study the permutational property of polynomials of the form <span><math><mi>f</mi><mo>(</mo><mi>L</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo><mo>+</mo><mi>k</mi><mo>(</mo><mi>L</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo><mo>⋅</mo><mi>M</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span> over the finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span>, where <span><math><mi>L</mi><mo>,</mo><mi>M</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span> are <em>q</em>-linearized polynomials and <span><math><mi>k</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span> satisfies a generic condition. We specialize in the case where <span><math><mi>L</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is the linearized <em>q</em>-associate of <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>a</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>t</mi></mrow></msup><mo>−</mo><mi>a</mi><mo>)</mo></math></span>, <em>t</em> is a divisor of <em>n</em> and <span><math><mi>a</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> satisfies <span><math><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi><mo>/</mo><mi>t</mi></mrow></msup><mo>=</mo><mn>1</mn></math></span>. This unifies many recent explicit constructions and provides new explicit constructions of permutation polynomials and their inverses. Moreover, we introduce a new algorithmic method to produce many permutation polynomials of <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> from permutations of <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>t</mi></mrow></msup></mrow></msub></math></span>, by simply solving a system of independent equations of the form <span><math><msub><mrow><mi>Tr</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>/</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>t</mi></mrow></msup></mrow></msub><mo>(</mo><msup><mrow><mi>δ</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msup><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>=</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, where the <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>'s are the coefficients of <em>f</em>. In fact, the same method can be applied to construct complete mappings of <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> from complete mappings of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing permutation polynomials from permutation polynomials of subfields\",\"authors\":\"Lucas Reis ,&nbsp;Qiang Wang\",\"doi\":\"10.1016/j.ffa.2024.102415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we study the permutational property of polynomials of the form <span><math><mi>f</mi><mo>(</mo><mi>L</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo><mo>+</mo><mi>k</mi><mo>(</mo><mi>L</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo><mo>⋅</mo><mi>M</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span> over the finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span>, where <span><math><mi>L</mi><mo>,</mo><mi>M</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span> are <em>q</em>-linearized polynomials and <span><math><mi>k</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span> satisfies a generic condition. We specialize in the case where <span><math><mi>L</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is the linearized <em>q</em>-associate of <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>a</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>t</mi></mrow></msup><mo>−</mo><mi>a</mi><mo>)</mo></math></span>, <em>t</em> is a divisor of <em>n</em> and <span><math><mi>a</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> satisfies <span><math><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi><mo>/</mo><mi>t</mi></mrow></msup><mo>=</mo><mn>1</mn></math></span>. This unifies many recent explicit constructions and provides new explicit constructions of permutation polynomials and their inverses. Moreover, we introduce a new algorithmic method to produce many permutation polynomials of <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> from permutations of <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>t</mi></mrow></msup></mrow></msub></math></span>, by simply solving a system of independent equations of the form <span><math><msub><mrow><mi>Tr</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>/</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>t</mi></mrow></msup></mrow></msub><mo>(</mo><msup><mrow><mi>δ</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msup><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>=</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, where the <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>'s are the coefficients of <em>f</em>. In fact, the same method can be applied to construct complete mappings of <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> from complete mappings of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>.</p></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579724000546\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724000546","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究有限域 Fqn 上 f(L(x))+k(L(x))⋅M(x)∈Fqn[x]形式的多项式的置换性质,其中 L,M∈Fq[x] 是 q 线性多项式,k∈Fqn[x] 满足一般条件。我们专门研究 L(x) 是 gt,a(x)=(xn-1)/(xt-a) 的线性化 q 关联,t 是 n 的除数,且 a∈Fq 满足 an/t=1 的情况。这统一了许多最新的显式构造,并提供了关于置换多项式及其倒数的新显式构造。此外,我们还介绍了一种新的算法方法,通过简单地求解形式为 Trqn/qt(δi-1ai)=ci(其中 ai 是 f 的系数)的独立方程组,就能从 Fqt 的置换中生成许多 Fqn 的置换多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructing permutation polynomials from permutation polynomials of subfields

In this paper we study the permutational property of polynomials of the form f(L(x))+k(L(x))M(x)Fqn[x] over the finite field Fqn, where L,MFq[x] are q-linearized polynomials and kFqn[x] satisfies a generic condition. We specialize in the case where L(x) is the linearized q-associate of gt,a(x)=(xn1)/(xta), t is a divisor of n and aFq satisfies an/t=1. This unifies many recent explicit constructions and provides new explicit constructions of permutation polynomials and their inverses. Moreover, we introduce a new algorithmic method to produce many permutation polynomials of Fqn from permutations of Fqt, by simply solving a system of independent equations of the form Trqn/qt(δi1ai)=ci, where the ai's are the coefficients of f. In fact, the same method can be applied to construct complete mappings of Fqn from complete mappings of Fq.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信