Chaelee Dalton, Brian Farlow, Warren M Christensen
{"title":"多变量微积分教科书对非笛卡尔坐标的表述:多变量微积分教科书内容与高年级物理应用之间的错位","authors":"Chaelee Dalton, Brian Farlow, Warren M Christensen","doi":"10.1088/1361-6404/ad2b98","DOIUrl":null,"url":null,"abstract":"Upper-division undergraduate physics coursework necessitates a firm grasp on and fluid use of mathematical knowledge, including an understanding of non-cartesian (specifically polar, spherical and cylindrical) coordinates and how to use them. A limited body of research into physics students’ thinking about coordinate systems suggests that even for upper-division students, understanding of coordinate system concepts is emergent. To more fully grasp upper-division physics students’ incoming understanding of non-cartesian coordinates, the prevalence of non-cartesian content in seven popular Calculus textbooks was studied. Using content analysis techniques, a coding scheme was developed to gain insight into the presentation of coordinate system content both quantitatively and qualitatively. An initial finding was that non-cartesian basis unit vectors were absent in all but one book. A deeper analysis of three of the calculus textbooks showed that cartesian coordinates comprise an overwhelming proportion of the textbooks’ content and that qualitatively the cartesian coordinate system is presented as the default coordinate system. Quantitative and qualitative results are presented with implications for how these results might impact physics teaching and research at the middle and upper-division.","PeriodicalId":50480,"journal":{"name":"European Journal of Physics","volume":"54 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivariable calculus textbook representation of non-cartesian coordinates: a misalignment between multivariable calculus textbook content and upper-division physics application\",\"authors\":\"Chaelee Dalton, Brian Farlow, Warren M Christensen\",\"doi\":\"10.1088/1361-6404/ad2b98\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Upper-division undergraduate physics coursework necessitates a firm grasp on and fluid use of mathematical knowledge, including an understanding of non-cartesian (specifically polar, spherical and cylindrical) coordinates and how to use them. A limited body of research into physics students’ thinking about coordinate systems suggests that even for upper-division students, understanding of coordinate system concepts is emergent. To more fully grasp upper-division physics students’ incoming understanding of non-cartesian coordinates, the prevalence of non-cartesian content in seven popular Calculus textbooks was studied. Using content analysis techniques, a coding scheme was developed to gain insight into the presentation of coordinate system content both quantitatively and qualitatively. An initial finding was that non-cartesian basis unit vectors were absent in all but one book. A deeper analysis of three of the calculus textbooks showed that cartesian coordinates comprise an overwhelming proportion of the textbooks’ content and that qualitatively the cartesian coordinate system is presented as the default coordinate system. Quantitative and qualitative results are presented with implications for how these results might impact physics teaching and research at the middle and upper-division.\",\"PeriodicalId\":50480,\"journal\":{\"name\":\"European Journal of Physics\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6404/ad2b98\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6404/ad2b98","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
Multivariable calculus textbook representation of non-cartesian coordinates: a misalignment between multivariable calculus textbook content and upper-division physics application
Upper-division undergraduate physics coursework necessitates a firm grasp on and fluid use of mathematical knowledge, including an understanding of non-cartesian (specifically polar, spherical and cylindrical) coordinates and how to use them. A limited body of research into physics students’ thinking about coordinate systems suggests that even for upper-division students, understanding of coordinate system concepts is emergent. To more fully grasp upper-division physics students’ incoming understanding of non-cartesian coordinates, the prevalence of non-cartesian content in seven popular Calculus textbooks was studied. Using content analysis techniques, a coding scheme was developed to gain insight into the presentation of coordinate system content both quantitatively and qualitatively. An initial finding was that non-cartesian basis unit vectors were absent in all but one book. A deeper analysis of three of the calculus textbooks showed that cartesian coordinates comprise an overwhelming proportion of the textbooks’ content and that qualitatively the cartesian coordinate system is presented as the default coordinate system. Quantitative and qualitative results are presented with implications for how these results might impact physics teaching and research at the middle and upper-division.
期刊介绍:
European Journal of Physics is a journal of the European Physical Society and its primary mission is to assist in maintaining and improving the standard of taught physics in universities and other institutes of higher education.
Authors submitting articles must indicate the usefulness of their material to physics education and make clear the level of readership (undergraduate or graduate) for which the article is intended. Submissions that omit this information or which, in the publisher''s opinion, do not contribute to the above mission will not be considered for publication.
To this end, we welcome articles that provide original insights and aim to enhance learning in one or more areas of physics. They should normally include at least one of the following:
Explanations of how contemporary research can inform the understanding of physics at university level: for example, a survey of a research field at a level accessible to students, explaining how it illustrates some general principles.
Original insights into the derivation of results. These should be of some general interest, consisting of more than corrections to textbooks.
Descriptions of novel laboratory exercises illustrating new techniques of general interest. Those based on relatively inexpensive equipment are especially welcome.
Articles of a scholarly or reflective nature that are aimed to be of interest to, and at a level appropriate for, physics students or recent graduates.
Descriptions of successful and original student projects, experimental, theoretical or computational.
Discussions of the history, philosophy and epistemology of physics, at a level accessible to physics students and teachers.
Reports of new developments in physics curricula and the techniques for teaching physics.
Physics Education Research reports: articles that provide original experimental and/or theoretical research contributions that directly relate to the teaching and learning of university-level physics.