非线性分数阶微分方程:新的闭式行波解

IF 1.8 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Mashael M. AlBaidani, Umair Ali, Abdul Hamid Ganie
{"title":"非线性分数阶微分方程:新的闭式行波解","authors":"Mashael M. AlBaidani, Umair Ali, Abdul Hamid Ganie","doi":"10.1515/phys-2023-0192","DOIUrl":null,"url":null,"abstract":"The fractional-order differential equations (FO-DEs) faithfully capture both physical and biological phenomena making them useful for describing nature. This work presents the stable and more effective closed-form traveling-wave solutions for the well-known nonlinear space–time fractional-order Burgers equation and Lonngren-wave equation with additional terms using the exp<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2023-0192_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>ξ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:tex-math>(-\\Phi (\\xi ))</jats:tex-math> </jats:alternatives> </jats:inline-formula> expansion method. The main advantage of this method over other methods is that it provides more accuracy of the FO-DEs with less computational work. The fractional-order derivative operator is the Caputo sense. The transformation is used to reduce the space–time fractional differential equations (FDEs) into a standard ordinary differential equation. By putting the suggested strategy into practice, the new closed-form traveling-wave solutions for various values of parameters were obtained. The generated 3D graphical soliton wave solutions demonstrate the superiority and simplicity of the suggested method for the nonlinear space–time FDEs.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear fractional-order differential equations: New closed-form traveling-wave solutions\",\"authors\":\"Mashael M. AlBaidani, Umair Ali, Abdul Hamid Ganie\",\"doi\":\"10.1515/phys-2023-0192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fractional-order differential equations (FO-DEs) faithfully capture both physical and biological phenomena making them useful for describing nature. This work presents the stable and more effective closed-form traveling-wave solutions for the well-known nonlinear space–time fractional-order Burgers equation and Lonngren-wave equation with additional terms using the exp<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_phys-2023-0192_eq_001.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant=\\\"normal\\\">Φ</m:mi> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>ξ</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:tex-math>(-\\\\Phi (\\\\xi ))</jats:tex-math> </jats:alternatives> </jats:inline-formula> expansion method. The main advantage of this method over other methods is that it provides more accuracy of the FO-DEs with less computational work. The fractional-order derivative operator is the Caputo sense. The transformation is used to reduce the space–time fractional differential equations (FDEs) into a standard ordinary differential equation. By putting the suggested strategy into practice, the new closed-form traveling-wave solutions for various values of parameters were obtained. The generated 3D graphical soliton wave solutions demonstrate the superiority and simplicity of the suggested method for the nonlinear space–time FDEs.\",\"PeriodicalId\":48710,\"journal\":{\"name\":\"Open Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/phys-2023-0192\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/phys-2023-0192","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

分数阶微分方程(FO-DEs)忠实地捕捉了物理和生物现象,使其成为描述自然界的有用工具。这项研究利用 exp ( - Φ ( ξ ) ) (-\Phi (\xi )) 展开方法,为著名的非线性时空分数阶布尔格斯方程和带有附加项的龙格伦波方程提出了稳定和更有效的闭式行波解。与其他方法相比,这种方法的主要优势在于它能以更少的计算量提供更高精度的 FO-DEs 。分数阶导数算子是卡普托意义的。该变换用于将时空分数微分方程(FDE)还原为标准常微分方程。通过将建议的策略付诸实践,获得了不同参数值下的新闭式行波解。生成的三维图形孤子波解证明了所建议的方法对于非线性时空分数微分方程的优越性和简便性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear fractional-order differential equations: New closed-form traveling-wave solutions
The fractional-order differential equations (FO-DEs) faithfully capture both physical and biological phenomena making them useful for describing nature. This work presents the stable and more effective closed-form traveling-wave solutions for the well-known nonlinear space–time fractional-order Burgers equation and Lonngren-wave equation with additional terms using the exp ( Φ ( ξ ) ) (-\Phi (\xi )) expansion method. The main advantage of this method over other methods is that it provides more accuracy of the FO-DEs with less computational work. The fractional-order derivative operator is the Caputo sense. The transformation is used to reduce the space–time fractional differential equations (FDEs) into a standard ordinary differential equation. By putting the suggested strategy into practice, the new closed-form traveling-wave solutions for various values of parameters were obtained. The generated 3D graphical soliton wave solutions demonstrate the superiority and simplicity of the suggested method for the nonlinear space–time FDEs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Physics
Open Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
3.20
自引率
5.30%
发文量
82
审稿时长
18 weeks
期刊介绍: Open Physics is a peer-reviewed, open access, electronic journal devoted to the publication of fundamental research results in all fields of physics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信