{"title":"针对不可压缩奥森方程的全局实时压力舒尔补全求解器的增量拉格朗日加速算法","authors":"Christoph Lohmann, Stefan Turek","doi":"10.1007/s00021-024-00862-7","DOIUrl":null,"url":null,"abstract":"<div><p>This work is focused on an accelerated global-in-time solution strategy for the Oseen equations, which highly exploits the augmented Lagrangian methodology to improve the convergence behavior of the Schur complement iteration. The main idea of the solution strategy is to block the individual linear systems of equations at each time step into a single all-at-once saddle point problem. By elimination of all velocity unknowns, the resulting implicitly defined equation can then be solved using a global-in-time pressure Schur complement (PSC) iteration. To accelerate the convergence behavior of this iterative scheme, the augmented Lagrangian approach is exploited by modifying the momentum equation for all time steps in a strongly consistent manner. While the introduced discrete grad-div stabilization does not modify the solution of the discretized Oseen equations, the quality of customized PSC preconditioners drastically improves and, hence, guarantees a rapid convergence. This strategy comes at the cost that the involved auxiliary problem for the velocity field becomes ill conditioned so that standard iterative solution strategies are no longer efficient. Therefore, a highly specialized multigrid solver based on modified intergrid transfer operators and an additive block preconditioner is extended to solution of the all-at-once problem. The potential of the proposed overall solution strategy is discussed in several numerical studies as they occur in commonly used linearization techniques for the incompressible Navier–Stokes equations.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00021-024-00862-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Augmented Lagrangian Acceleration of Global-in-Time Pressure Schur Complement Solvers for Incompressible Oseen Equations\",\"authors\":\"Christoph Lohmann, Stefan Turek\",\"doi\":\"10.1007/s00021-024-00862-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work is focused on an accelerated global-in-time solution strategy for the Oseen equations, which highly exploits the augmented Lagrangian methodology to improve the convergence behavior of the Schur complement iteration. The main idea of the solution strategy is to block the individual linear systems of equations at each time step into a single all-at-once saddle point problem. By elimination of all velocity unknowns, the resulting implicitly defined equation can then be solved using a global-in-time pressure Schur complement (PSC) iteration. To accelerate the convergence behavior of this iterative scheme, the augmented Lagrangian approach is exploited by modifying the momentum equation for all time steps in a strongly consistent manner. While the introduced discrete grad-div stabilization does not modify the solution of the discretized Oseen equations, the quality of customized PSC preconditioners drastically improves and, hence, guarantees a rapid convergence. This strategy comes at the cost that the involved auxiliary problem for the velocity field becomes ill conditioned so that standard iterative solution strategies are no longer efficient. Therefore, a highly specialized multigrid solver based on modified intergrid transfer operators and an additive block preconditioner is extended to solution of the all-at-once problem. The potential of the proposed overall solution strategy is discussed in several numerical studies as they occur in commonly used linearization techniques for the incompressible Navier–Stokes equations.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00021-024-00862-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-024-00862-7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-024-00862-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Augmented Lagrangian Acceleration of Global-in-Time Pressure Schur Complement Solvers for Incompressible Oseen Equations
This work is focused on an accelerated global-in-time solution strategy for the Oseen equations, which highly exploits the augmented Lagrangian methodology to improve the convergence behavior of the Schur complement iteration. The main idea of the solution strategy is to block the individual linear systems of equations at each time step into a single all-at-once saddle point problem. By elimination of all velocity unknowns, the resulting implicitly defined equation can then be solved using a global-in-time pressure Schur complement (PSC) iteration. To accelerate the convergence behavior of this iterative scheme, the augmented Lagrangian approach is exploited by modifying the momentum equation for all time steps in a strongly consistent manner. While the introduced discrete grad-div stabilization does not modify the solution of the discretized Oseen equations, the quality of customized PSC preconditioners drastically improves and, hence, guarantees a rapid convergence. This strategy comes at the cost that the involved auxiliary problem for the velocity field becomes ill conditioned so that standard iterative solution strategies are no longer efficient. Therefore, a highly specialized multigrid solver based on modified intergrid transfer operators and an additive block preconditioner is extended to solution of the all-at-once problem. The potential of the proposed overall solution strategy is discussed in several numerical studies as they occur in commonly used linearization techniques for the incompressible Navier–Stokes equations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.