{"title":"贝叶斯曲线拟合的自适应调节可逆跳变算法","authors":"Zhiyao Tian, Anthony Lee, Shunhua Zhou","doi":"10.1088/1361-6420/ad2cf7","DOIUrl":null,"url":null,"abstract":"Bayesian curve fitting plays an important role in inverse problems, and is often addressed using the reversible jump Markov chain Monte Carlo (RJMCMC) algorithm. However, this algorithm can be computationally inefficient without appropriately tuned proposals. As a remedy, we present an adaptive RJMCMC algorithm for the curve fitting problems by extending the adaptive Metropolis sampler from a fixed-dimensional to a trans-dimensional case. In this presented algorithm, both the size and orientation of the proposal function can be automatically adjusted in the sampling process. Specifically, the curve fitting setting allows for the approximation of the posterior covariance of the <italic toggle=\"yes\">a priori</italic> unknown function on a representative grid of points. This approximation facilitates the definition of efficient proposals. In addition, we introduce an auxiliary-tempered version of this algorithm via non-reversible parallel tempering. To evaluate the algorithms, we conduct numerical tests involving a series of controlled experiments. The results demonstrate that the adaptive algorithms exhibit significantly higher efficiency compared to the conventional ones. Even in cases where the posterior distribution is highly complex, leading to ineffective convergence in the auxiliary-tempered conventional RJMCMC, the proposed auxiliary-tempered adaptive RJMCMC performs satisfactorily. Furthermore, we present a realistic inverse example to test the algorithms. The successful application of the adaptive algorithm distinguishes it again from the conventional one that fails to converge effectively even after millions of iterations.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"5 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive tempered reversible jump algorithm for Bayesian curve fitting\",\"authors\":\"Zhiyao Tian, Anthony Lee, Shunhua Zhou\",\"doi\":\"10.1088/1361-6420/ad2cf7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bayesian curve fitting plays an important role in inverse problems, and is often addressed using the reversible jump Markov chain Monte Carlo (RJMCMC) algorithm. However, this algorithm can be computationally inefficient without appropriately tuned proposals. As a remedy, we present an adaptive RJMCMC algorithm for the curve fitting problems by extending the adaptive Metropolis sampler from a fixed-dimensional to a trans-dimensional case. In this presented algorithm, both the size and orientation of the proposal function can be automatically adjusted in the sampling process. Specifically, the curve fitting setting allows for the approximation of the posterior covariance of the <italic toggle=\\\"yes\\\">a priori</italic> unknown function on a representative grid of points. This approximation facilitates the definition of efficient proposals. In addition, we introduce an auxiliary-tempered version of this algorithm via non-reversible parallel tempering. To evaluate the algorithms, we conduct numerical tests involving a series of controlled experiments. The results demonstrate that the adaptive algorithms exhibit significantly higher efficiency compared to the conventional ones. Even in cases where the posterior distribution is highly complex, leading to ineffective convergence in the auxiliary-tempered conventional RJMCMC, the proposed auxiliary-tempered adaptive RJMCMC performs satisfactorily. Furthermore, we present a realistic inverse example to test the algorithms. The successful application of the adaptive algorithm distinguishes it again from the conventional one that fails to converge effectively even after millions of iterations.\",\"PeriodicalId\":50275,\"journal\":{\"name\":\"Inverse Problems\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6420/ad2cf7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad2cf7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Adaptive tempered reversible jump algorithm for Bayesian curve fitting
Bayesian curve fitting plays an important role in inverse problems, and is often addressed using the reversible jump Markov chain Monte Carlo (RJMCMC) algorithm. However, this algorithm can be computationally inefficient without appropriately tuned proposals. As a remedy, we present an adaptive RJMCMC algorithm for the curve fitting problems by extending the adaptive Metropolis sampler from a fixed-dimensional to a trans-dimensional case. In this presented algorithm, both the size and orientation of the proposal function can be automatically adjusted in the sampling process. Specifically, the curve fitting setting allows for the approximation of the posterior covariance of the a priori unknown function on a representative grid of points. This approximation facilitates the definition of efficient proposals. In addition, we introduce an auxiliary-tempered version of this algorithm via non-reversible parallel tempering. To evaluate the algorithms, we conduct numerical tests involving a series of controlled experiments. The results demonstrate that the adaptive algorithms exhibit significantly higher efficiency compared to the conventional ones. Even in cases where the posterior distribution is highly complex, leading to ineffective convergence in the auxiliary-tempered conventional RJMCMC, the proposed auxiliary-tempered adaptive RJMCMC performs satisfactorily. Furthermore, we present a realistic inverse example to test the algorithms. The successful application of the adaptive algorithm distinguishes it again from the conventional one that fails to converge effectively even after millions of iterations.
期刊介绍:
An interdisciplinary journal combining mathematical and experimental papers on inverse problems with theoretical, numerical and practical approaches to their solution.
As well as applied mathematicians, physical scientists and engineers, the readership includes those working in geophysics, radar, optics, biology, acoustics, communication theory, signal processing and imaging, among others.
The emphasis is on publishing original contributions to methods of solving mathematical, physical and applied problems. To be publishable in this journal, papers must meet the highest standards of scientific quality, contain significant and original new science and should present substantial advancement in the field. Due to the broad scope of the journal, we require that authors provide sufficient introductory material to appeal to the wide readership and that articles which are not explicitly applied include a discussion of possible applications.