具有各向异性扰动的多谐算子的局部数据逆问题

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Sombuddha Bhattacharyya, Pranav Kumar
{"title":"具有各向异性扰动的多谐算子的局部数据逆问题","authors":"Sombuddha Bhattacharyya, Pranav Kumar","doi":"10.1088/1361-6420/ad3164","DOIUrl":null,"url":null,"abstract":"In this article, we study an inverse problem with local data for a linear polyharmonic operator with several lower order tensorial perturbations. We consider our domain to have an inaccessible portion of the boundary where neither the input can be prescribed nor the output can be measured. We prove the unique determination of all the tensorial coefficients of the operator from the knowledge of the Dirichlet and Neumann map on the accessible part of the boundary, under suitable geometric assumptions on the domain.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local data inverse problem for the polyharmonic operator with anisotropic perturbations\",\"authors\":\"Sombuddha Bhattacharyya, Pranav Kumar\",\"doi\":\"10.1088/1361-6420/ad3164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study an inverse problem with local data for a linear polyharmonic operator with several lower order tensorial perturbations. We consider our domain to have an inaccessible portion of the boundary where neither the input can be prescribed nor the output can be measured. We prove the unique determination of all the tensorial coefficients of the operator from the knowledge of the Dirichlet and Neumann map on the accessible part of the boundary, under suitable geometric assumptions on the domain.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6420/ad3164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad3164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了一个线性多谐算子的局部数据逆问题,该算子具有多个低阶张量扰动。我们认为我们的领域有一个无法进入的边界部分,在该部分既无法规定输入,也无法测量输出。我们证明了在适当的几何假设条件下,根据对边界可进入部分的狄利克特图和诺依曼图的了解,可以唯一确定算子的所有张量系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local data inverse problem for the polyharmonic operator with anisotropic perturbations
In this article, we study an inverse problem with local data for a linear polyharmonic operator with several lower order tensorial perturbations. We consider our domain to have an inaccessible portion of the boundary where neither the input can be prescribed nor the output can be measured. We prove the unique determination of all the tensorial coefficients of the operator from the knowledge of the Dirichlet and Neumann map on the accessible part of the boundary, under suitable geometric assumptions on the domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信