{"title":"确定未知时变边界的反随机抛物线问题的稳定性估计 *","authors":"Zhonghua Liao, Qi Lü","doi":"10.1088/1361-6420/ad2d72","DOIUrl":null,"url":null,"abstract":"Stochastic parabolic equations are widely used to model many random phenomena in natural sciences, such as the temperature distribution in a noisy medium, the dynamics of a chemical reaction in a noisy environment, or the evolution of the density of bacteria population. In many cases, the equation may involve an unknown moving boundary which could represent a change of phase, a reaction front, or an unknown population. In this paper, we focus on an inverse problem with the goal is to determine an unknown moving boundary based on data observed in a specific interior subdomain for the stochastic parabolic equation. The uniqueness of the solution of this problem is proved, and furthermore a stability estimate of log type is derived. This allows us, theoretically, to track and to monitor the behavior of the unknown boundary from observation in an arbitrary interior domain. The primary tool is a new Carleman estimate for stochastic parabolic equations. As a byproduct, we obtain a quantitative unique continuation property for stochastic parabolic equations.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"31 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability estimate for an inverse stochastic parabolic problem of determining unknown time-varying boundary *\",\"authors\":\"Zhonghua Liao, Qi Lü\",\"doi\":\"10.1088/1361-6420/ad2d72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stochastic parabolic equations are widely used to model many random phenomena in natural sciences, such as the temperature distribution in a noisy medium, the dynamics of a chemical reaction in a noisy environment, or the evolution of the density of bacteria population. In many cases, the equation may involve an unknown moving boundary which could represent a change of phase, a reaction front, or an unknown population. In this paper, we focus on an inverse problem with the goal is to determine an unknown moving boundary based on data observed in a specific interior subdomain for the stochastic parabolic equation. The uniqueness of the solution of this problem is proved, and furthermore a stability estimate of log type is derived. This allows us, theoretically, to track and to monitor the behavior of the unknown boundary from observation in an arbitrary interior domain. The primary tool is a new Carleman estimate for stochastic parabolic equations. As a byproduct, we obtain a quantitative unique continuation property for stochastic parabolic equations.\",\"PeriodicalId\":50275,\"journal\":{\"name\":\"Inverse Problems\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6420/ad2d72\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad2d72","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Stability estimate for an inverse stochastic parabolic problem of determining unknown time-varying boundary *
Stochastic parabolic equations are widely used to model many random phenomena in natural sciences, such as the temperature distribution in a noisy medium, the dynamics of a chemical reaction in a noisy environment, or the evolution of the density of bacteria population. In many cases, the equation may involve an unknown moving boundary which could represent a change of phase, a reaction front, or an unknown population. In this paper, we focus on an inverse problem with the goal is to determine an unknown moving boundary based on data observed in a specific interior subdomain for the stochastic parabolic equation. The uniqueness of the solution of this problem is proved, and furthermore a stability estimate of log type is derived. This allows us, theoretically, to track and to monitor the behavior of the unknown boundary from observation in an arbitrary interior domain. The primary tool is a new Carleman estimate for stochastic parabolic equations. As a byproduct, we obtain a quantitative unique continuation property for stochastic parabolic equations.
期刊介绍:
An interdisciplinary journal combining mathematical and experimental papers on inverse problems with theoretical, numerical and practical approaches to their solution.
As well as applied mathematicians, physical scientists and engineers, the readership includes those working in geophysics, radar, optics, biology, acoustics, communication theory, signal processing and imaging, among others.
The emphasis is on publishing original contributions to methods of solving mathematical, physical and applied problems. To be publishable in this journal, papers must meet the highest standards of scientific quality, contain significant and original new science and should present substantial advancement in the field. Due to the broad scope of the journal, we require that authors provide sufficient introductory material to appeal to the wide readership and that articles which are not explicitly applied include a discussion of possible applications.