{"title":"电动汽车电池缩比模型热失控熄灭实验","authors":"Hie Chan Kang","doi":"10.1007/s12239-024-00065-z","DOIUrl":null,"url":null,"abstract":"<p>This study aimed to determine a method to suppress thermal runaway in electric vehicles by passing water directly inside the battery case. A scaled-down model experiment was conducted using a lithium-ion battery pack consisting of six 18650 cells, which is equal to about one-thousandth of an electric vehicle’s charging capacity. The heat generation rate, heat transfer coefficient, and time constant for cooling were measured using a simple model for the cooling methods, thermal runaway stages, and state of charge. When thermal runaway occurred during natural cooling, the battery temperature rose to 630 °C at a rate of 116 °C/s. Through water injection, the thermal runaway was quickly suppressed with a time constant of about 3 s and a heat transfer coefficient of 3400 W/m<sup>2</sup>·K. The water effectively prevented chain explosions and kept harmful gases emitted from the batteries. It was found that it is difficult to completely suppress thermal runaway using the latent heat of the stagnant water in the spaces between cylindrical batteries. If the experimental results of this study were to be applied to an actual vehicle, it is expected that thermal runaway could be suppressed with a time constant of about 170 s and 1 ton of water.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experiment on Extinguishing Thermal Runaway in a Scaled-Down Model of an Electric Vehicle Battery\",\"authors\":\"Hie Chan Kang\",\"doi\":\"10.1007/s12239-024-00065-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study aimed to determine a method to suppress thermal runaway in electric vehicles by passing water directly inside the battery case. A scaled-down model experiment was conducted using a lithium-ion battery pack consisting of six 18650 cells, which is equal to about one-thousandth of an electric vehicle’s charging capacity. The heat generation rate, heat transfer coefficient, and time constant for cooling were measured using a simple model for the cooling methods, thermal runaway stages, and state of charge. When thermal runaway occurred during natural cooling, the battery temperature rose to 630 °C at a rate of 116 °C/s. Through water injection, the thermal runaway was quickly suppressed with a time constant of about 3 s and a heat transfer coefficient of 3400 W/m<sup>2</sup>·K. The water effectively prevented chain explosions and kept harmful gases emitted from the batteries. It was found that it is difficult to completely suppress thermal runaway using the latent heat of the stagnant water in the spaces between cylindrical batteries. If the experimental results of this study were to be applied to an actual vehicle, it is expected that thermal runaway could be suppressed with a time constant of about 170 s and 1 ton of water.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12239-024-00065-z\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00065-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Experiment on Extinguishing Thermal Runaway in a Scaled-Down Model of an Electric Vehicle Battery
This study aimed to determine a method to suppress thermal runaway in electric vehicles by passing water directly inside the battery case. A scaled-down model experiment was conducted using a lithium-ion battery pack consisting of six 18650 cells, which is equal to about one-thousandth of an electric vehicle’s charging capacity. The heat generation rate, heat transfer coefficient, and time constant for cooling were measured using a simple model for the cooling methods, thermal runaway stages, and state of charge. When thermal runaway occurred during natural cooling, the battery temperature rose to 630 °C at a rate of 116 °C/s. Through water injection, the thermal runaway was quickly suppressed with a time constant of about 3 s and a heat transfer coefficient of 3400 W/m2·K. The water effectively prevented chain explosions and kept harmful gases emitted from the batteries. It was found that it is difficult to completely suppress thermal runaway using the latent heat of the stagnant water in the spaces between cylindrical batteries. If the experimental results of this study were to be applied to an actual vehicle, it is expected that thermal runaway could be suppressed with a time constant of about 170 s and 1 ton of water.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.