{"title":"通过单次远场测量稳定确定阻抗障碍物","authors":"Huaian Diao, Hongyu Liu, Longyue Tao","doi":"10.1088/1361-6420/ad3087","DOIUrl":null,"url":null,"abstract":"We establish sharp stability estimates of logarithmic type in determining an impedance obstacle in <inline-formula>\n<tex-math><?CDATA $\\mathbb{R}^2$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:msup><mml:mrow><mml:mi mathvariant=\"double-struck\">R</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:math>\n<inline-graphic xlink:href=\"ipad3087ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. The obstacle is the polygonal shape and the surface impedance parameter is non-zero constant. We establish the stability results using a single far-field pattern, constituting a longstanding problem in the inverse scattering theory. This is the first stability result in the literature in determining an impedance obstacle by a single far-field measurement. The stability in simultaneously determining the obstacle and the boundary impedance is established in terms of the classical Hausdorff distance. Several technical novelties and developments in the mathematical strategy developed for establishing the aforementioned stability results exist. First, the stability analysis is conducted around a corner point in a micro-local manner. Second, our stability estimates establish explicit relationships between the obstacle’s geometric configurations and the wave field’s vanishing order at the corner point. Third, we develop novel error propagation techniques to tackle singularities of the wave field at a corner with the impedance boundary condition.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable determination of an impedance obstacle by a single far-field measurement\",\"authors\":\"Huaian Diao, Hongyu Liu, Longyue Tao\",\"doi\":\"10.1088/1361-6420/ad3087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish sharp stability estimates of logarithmic type in determining an impedance obstacle in <inline-formula>\\n<tex-math><?CDATA $\\\\mathbb{R}^2$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:msup><mml:mrow><mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:math>\\n<inline-graphic xlink:href=\\\"ipad3087ieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>. The obstacle is the polygonal shape and the surface impedance parameter is non-zero constant. We establish the stability results using a single far-field pattern, constituting a longstanding problem in the inverse scattering theory. This is the first stability result in the literature in determining an impedance obstacle by a single far-field measurement. The stability in simultaneously determining the obstacle and the boundary impedance is established in terms of the classical Hausdorff distance. Several technical novelties and developments in the mathematical strategy developed for establishing the aforementioned stability results exist. First, the stability analysis is conducted around a corner point in a micro-local manner. Second, our stability estimates establish explicit relationships between the obstacle’s geometric configurations and the wave field’s vanishing order at the corner point. Third, we develop novel error propagation techniques to tackle singularities of the wave field at a corner with the impedance boundary condition.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6420/ad3087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad3087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Stable determination of an impedance obstacle by a single far-field measurement
We establish sharp stability estimates of logarithmic type in determining an impedance obstacle in R2. The obstacle is the polygonal shape and the surface impedance parameter is non-zero constant. We establish the stability results using a single far-field pattern, constituting a longstanding problem in the inverse scattering theory. This is the first stability result in the literature in determining an impedance obstacle by a single far-field measurement. The stability in simultaneously determining the obstacle and the boundary impedance is established in terms of the classical Hausdorff distance. Several technical novelties and developments in the mathematical strategy developed for establishing the aforementioned stability results exist. First, the stability analysis is conducted around a corner point in a micro-local manner. Second, our stability estimates establish explicit relationships between the obstacle’s geometric configurations and the wave field’s vanishing order at the corner point. Third, we develop novel error propagation techniques to tackle singularities of the wave field at a corner with the impedance boundary condition.