黎曼曲面上非线性抛物方程的局部汉密尔顿型梯度估计和哈纳克不等式

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Wen Wang, Da-peng Xie, Hui Zhou
{"title":"黎曼曲面上非线性抛物方程的局部汉密尔顿型梯度估计和哈纳克不等式","authors":"Wen Wang,&nbsp;Da-peng Xie,&nbsp;Hui Zhou","doi":"10.1007/s10255-024-1041-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we prove a local Hamilton type gradient estimate for positive solution of the nonlinear parabolic equation </p><div><div><span>$${u_t}(x,t) = \\Delta u(x,t) + au(x,t)\\ln \\,u(x,t) + b{u^\\alpha }(x,t),$$</span></div></div><p> on <b>M</b> × (−∞, ∞) with <i>α</i> ∈ <b>R</b>, where <i>a</i> and <i>b</i> are constants. As application, the Harnack inequalities are derived.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"40 2","pages":"539 - 546"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local Hamilton type Gradient Estimates and Harnack Inequalities for Nonlinear Parabolic Equations on Riemannian Manifolds\",\"authors\":\"Wen Wang,&nbsp;Da-peng Xie,&nbsp;Hui Zhou\",\"doi\":\"10.1007/s10255-024-1041-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we prove a local Hamilton type gradient estimate for positive solution of the nonlinear parabolic equation </p><div><div><span>$${u_t}(x,t) = \\\\Delta u(x,t) + au(x,t)\\\\ln \\\\,u(x,t) + b{u^\\\\alpha }(x,t),$$</span></div></div><p> on <b>M</b> × (−∞, ∞) with <i>α</i> ∈ <b>R</b>, where <i>a</i> and <i>b</i> are constants. As application, the Harnack inequalities are derived.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"40 2\",\"pages\":\"539 - 546\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1041-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1041-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了非线性抛物方程 $${u_t}(x,t) = \Delta u(x,t) + au(x,t)\ln \,u(x,t) + b{u^\alpha }(x,t), $$ 在 M × (-∞, ∞) 上的正解的局部哈密顿梯度估计,α∈ R,其中 a 和 b 是常数。作为应用,得出哈纳克不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local Hamilton type Gradient Estimates and Harnack Inequalities for Nonlinear Parabolic Equations on Riemannian Manifolds

In this paper, we prove a local Hamilton type gradient estimate for positive solution of the nonlinear parabolic equation

$${u_t}(x,t) = \Delta u(x,t) + au(x,t)\ln \,u(x,t) + b{u^\alpha }(x,t),$$

on M × (−∞, ∞) with αR, where a and b are constants. As application, the Harnack inequalities are derived.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信