{"title":"黎曼曲面上非线性抛物方程的局部汉密尔顿型梯度估计和哈纳克不等式","authors":"Wen Wang, Da-peng Xie, Hui Zhou","doi":"10.1007/s10255-024-1041-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we prove a local Hamilton type gradient estimate for positive solution of the nonlinear parabolic equation </p><div><div><span>$${u_t}(x,t) = \\Delta u(x,t) + au(x,t)\\ln \\,u(x,t) + b{u^\\alpha }(x,t),$$</span></div></div><p> on <b>M</b> × (−∞, ∞) with <i>α</i> ∈ <b>R</b>, where <i>a</i> and <i>b</i> are constants. As application, the Harnack inequalities are derived.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"40 2","pages":"539 - 546"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local Hamilton type Gradient Estimates and Harnack Inequalities for Nonlinear Parabolic Equations on Riemannian Manifolds\",\"authors\":\"Wen Wang, Da-peng Xie, Hui Zhou\",\"doi\":\"10.1007/s10255-024-1041-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we prove a local Hamilton type gradient estimate for positive solution of the nonlinear parabolic equation </p><div><div><span>$${u_t}(x,t) = \\\\Delta u(x,t) + au(x,t)\\\\ln \\\\,u(x,t) + b{u^\\\\alpha }(x,t),$$</span></div></div><p> on <b>M</b> × (−∞, ∞) with <i>α</i> ∈ <b>R</b>, where <i>a</i> and <i>b</i> are constants. As application, the Harnack inequalities are derived.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"40 2\",\"pages\":\"539 - 546\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1041-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1041-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
本文证明了非线性抛物方程 $${u_t}(x,t) = \Delta u(x,t) + au(x,t)\ln \,u(x,t) + b{u^\alpha }(x,t), $$ 在 M × (-∞, ∞) 上的正解的局部哈密顿梯度估计,α∈ R,其中 a 和 b 是常数。作为应用,得出哈纳克不等式。
期刊介绍:
Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.