论 Cayley 数字图的哈密顿性质

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Fang Duan, Qiong-xiang Huang
{"title":"论 Cayley 数字图的哈密顿性质","authors":"Fang Duan,&nbsp;Qiong-xiang Huang","doi":"10.1007/s10255-024-1023-9","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>G</i> be a finite group generated by <i>S</i> and <i>C</i>(<i>G, S</i>) the Cayley digraphs of <i>G</i> with connection set <i>S</i>. In this paper, we give some sufficient conditions for the existence of hamiltonian circuit in <i>C</i>(<i>G, S</i>), where <i>G</i> = <i>Z</i><sub><i>m</i></sub> ⋊ <i>H</i> is a semiproduct of <i>Z</i><sub><i>m</i></sub> by a subgroup <i>H</i> of <i>G</i>. In particular, if <i>m</i> is a prime, then the Cayley digraph of <i>G</i> has a hamiltonian circuit unless <i>G</i> = <i>Z</i><sub><i>m</i></sub> × <i>H</i>. In addition, we introduce a new digraph operation, called <i>φ</i>-semiproduct of Γ<sub>1</sub> by Γ<sub>2</sub> and denoted by Γ<sub>1</sub> ⋊<sub><i>φ</i></sub> Γ<sub>2</sub>, in terms of mapping <i>φ</i>: <i>V</i>(Γ<sub>2</sub>) → {1, −1}. Furthermore we prove that <i>C</i>(<i>Z</i><sub><i>m</i></sub>, {<i>a</i>}) ⋊<sub><i>φ</i></sub><i>C</i>(<i>H, S</i>) is also a Cayley digraph if <i>φ</i> is a homomorphism from <i>H</i> to <span>\\(\\{ 1, - 1\\} \\le Z_m^ * \\)</span>, which produces some classes of Cayley digraphs that have hamiltonian circuits.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"40 2","pages":"547 - 556"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Hamiltonian Property of Cayley Digraphs\",\"authors\":\"Fang Duan,&nbsp;Qiong-xiang Huang\",\"doi\":\"10.1007/s10255-024-1023-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>G</i> be a finite group generated by <i>S</i> and <i>C</i>(<i>G, S</i>) the Cayley digraphs of <i>G</i> with connection set <i>S</i>. In this paper, we give some sufficient conditions for the existence of hamiltonian circuit in <i>C</i>(<i>G, S</i>), where <i>G</i> = <i>Z</i><sub><i>m</i></sub> ⋊ <i>H</i> is a semiproduct of <i>Z</i><sub><i>m</i></sub> by a subgroup <i>H</i> of <i>G</i>. In particular, if <i>m</i> is a prime, then the Cayley digraph of <i>G</i> has a hamiltonian circuit unless <i>G</i> = <i>Z</i><sub><i>m</i></sub> × <i>H</i>. In addition, we introduce a new digraph operation, called <i>φ</i>-semiproduct of Γ<sub>1</sub> by Γ<sub>2</sub> and denoted by Γ<sub>1</sub> ⋊<sub><i>φ</i></sub> Γ<sub>2</sub>, in terms of mapping <i>φ</i>: <i>V</i>(Γ<sub>2</sub>) → {1, −1}. Furthermore we prove that <i>C</i>(<i>Z</i><sub><i>m</i></sub>, {<i>a</i>}) ⋊<sub><i>φ</i></sub><i>C</i>(<i>H, S</i>) is also a Cayley digraph if <i>φ</i> is a homomorphism from <i>H</i> to <span>\\\\(\\\\{ 1, - 1\\\\} \\\\le Z_m^ * \\\\)</span>, which produces some classes of Cayley digraphs that have hamiltonian circuits.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"40 2\",\"pages\":\"547 - 556\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1023-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1023-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了 C(G, S) 中存在哈密顿电路的一些充分条件,其中 G = Zm ⋊ H 是 Zm 通过 G 的子群 H 的半积。此外,我们还引入了一种新的数图运算,称为φ-Γ1 对Γ2 的半积,用Γ1 ⋊φ Γ2表示,即映射φ:v(γ2) → {1, -1} 映射。此外,我们还证明,如果φ是从 H 到 \(\{ 1, - 1\} \le Z_m^ * \) 的同态,那么 C(Zm, {a}) ⋊φC(H, S) 也是一个 Cayley 图,这就产生了一些具有哈密顿环路的 Cayley 图类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Hamiltonian Property of Cayley Digraphs

Let G be a finite group generated by S and C(G, S) the Cayley digraphs of G with connection set S. In this paper, we give some sufficient conditions for the existence of hamiltonian circuit in C(G, S), where G = ZmH is a semiproduct of Zm by a subgroup H of G. In particular, if m is a prime, then the Cayley digraph of G has a hamiltonian circuit unless G = Zm × H. In addition, we introduce a new digraph operation, called φ-semiproduct of Γ1 by Γ2 and denoted by Γ1φ Γ2, in terms of mapping φ: V2) → {1, −1}. Furthermore we prove that C(Zm, {a}) ⋊φC(H, S) is also a Cayley digraph if φ is a homomorphism from H to \(\{ 1, - 1\} \le Z_m^ * \), which produces some classes of Cayley digraphs that have hamiltonian circuits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信