{"title":"论 Cayley 数字图的哈密顿性质","authors":"Fang Duan, Qiong-xiang Huang","doi":"10.1007/s10255-024-1023-9","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>G</i> be a finite group generated by <i>S</i> and <i>C</i>(<i>G, S</i>) the Cayley digraphs of <i>G</i> with connection set <i>S</i>. In this paper, we give some sufficient conditions for the existence of hamiltonian circuit in <i>C</i>(<i>G, S</i>), where <i>G</i> = <i>Z</i><sub><i>m</i></sub> ⋊ <i>H</i> is a semiproduct of <i>Z</i><sub><i>m</i></sub> by a subgroup <i>H</i> of <i>G</i>. In particular, if <i>m</i> is a prime, then the Cayley digraph of <i>G</i> has a hamiltonian circuit unless <i>G</i> = <i>Z</i><sub><i>m</i></sub> × <i>H</i>. In addition, we introduce a new digraph operation, called <i>φ</i>-semiproduct of Γ<sub>1</sub> by Γ<sub>2</sub> and denoted by Γ<sub>1</sub> ⋊<sub><i>φ</i></sub> Γ<sub>2</sub>, in terms of mapping <i>φ</i>: <i>V</i>(Γ<sub>2</sub>) → {1, −1}. Furthermore we prove that <i>C</i>(<i>Z</i><sub><i>m</i></sub>, {<i>a</i>}) ⋊<sub><i>φ</i></sub><i>C</i>(<i>H, S</i>) is also a Cayley digraph if <i>φ</i> is a homomorphism from <i>H</i> to <span>\\(\\{ 1, - 1\\} \\le Z_m^ * \\)</span>, which produces some classes of Cayley digraphs that have hamiltonian circuits.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Hamiltonian Property of Cayley Digraphs\",\"authors\":\"Fang Duan, Qiong-xiang Huang\",\"doi\":\"10.1007/s10255-024-1023-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>G</i> be a finite group generated by <i>S</i> and <i>C</i>(<i>G, S</i>) the Cayley digraphs of <i>G</i> with connection set <i>S</i>. In this paper, we give some sufficient conditions for the existence of hamiltonian circuit in <i>C</i>(<i>G, S</i>), where <i>G</i> = <i>Z</i><sub><i>m</i></sub> ⋊ <i>H</i> is a semiproduct of <i>Z</i><sub><i>m</i></sub> by a subgroup <i>H</i> of <i>G</i>. In particular, if <i>m</i> is a prime, then the Cayley digraph of <i>G</i> has a hamiltonian circuit unless <i>G</i> = <i>Z</i><sub><i>m</i></sub> × <i>H</i>. In addition, we introduce a new digraph operation, called <i>φ</i>-semiproduct of Γ<sub>1</sub> by Γ<sub>2</sub> and denoted by Γ<sub>1</sub> ⋊<sub><i>φ</i></sub> Γ<sub>2</sub>, in terms of mapping <i>φ</i>: <i>V</i>(Γ<sub>2</sub>) → {1, −1}. Furthermore we prove that <i>C</i>(<i>Z</i><sub><i>m</i></sub>, {<i>a</i>}) ⋊<sub><i>φ</i></sub><i>C</i>(<i>H, S</i>) is also a Cayley digraph if <i>φ</i> is a homomorphism from <i>H</i> to <span>\\\\(\\\\{ 1, - 1\\\\} \\\\le Z_m^ * \\\\)</span>, which produces some classes of Cayley digraphs that have hamiltonian circuits.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1023-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1023-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文给出了 C(G, S) 中存在哈密顿电路的一些充分条件,其中 G = Zm ⋊ H 是 Zm 通过 G 的子群 H 的半积。此外,我们还引入了一种新的数图运算,称为φ-Γ1 对Γ2 的半积,用Γ1 ⋊φ Γ2表示,即映射φ:v(γ2) → {1, -1} 映射。此外,我们还证明,如果φ是从 H 到 \(\{ 1, - 1\} \le Z_m^ * \) 的同态,那么 C(Zm, {a}) ⋊φC(H, S) 也是一个 Cayley 图,这就产生了一些具有哈密顿环路的 Cayley 图类。
Let G be a finite group generated by S and C(G, S) the Cayley digraphs of G with connection set S. In this paper, we give some sufficient conditions for the existence of hamiltonian circuit in C(G, S), where G = Zm ⋊ H is a semiproduct of Zm by a subgroup H of G. In particular, if m is a prime, then the Cayley digraph of G has a hamiltonian circuit unless G = Zm × H. In addition, we introduce a new digraph operation, called φ-semiproduct of Γ1 by Γ2 and denoted by Γ1 ⋊φ Γ2, in terms of mapping φ: V(Γ2) → {1, −1}. Furthermore we prove that C(Zm, {a}) ⋊φC(H, S) is also a Cayley digraph if φ is a homomorphism from H to \(\{ 1, - 1\} \le Z_m^ * \), which produces some classes of Cayley digraphs that have hamiltonian circuits.