{"title":"狄拉克型条件下图形集合的彩虹泛函性","authors":"Lu-yi Li, Ping Li, Xue-liang Li","doi":"10.1007/s10255-024-1076-9","DOIUrl":null,"url":null,"abstract":"<div><p>Let <b>G</b> = {<i>G</i><sub><i>i</i></sub>: <i>i</i> ∈ [<i>n</i>]} be a collection of not necessarily distinct <i>n</i>-vertex graphs with the same vertex set <i>V</i>, where <b>G</b> can be seen as an edge-colored (multi)graph and each <i>G</i><sub><i>i</i></sub> is the set of edges with color <i>i</i>. A graph <i>F</i> on <i>V</i> is called <i>rainbow</i> if any two edges of <i>F</i> come from different <i>G</i><sub><i>i</i></sub>s’. We say that <b>G</b> is <i>rainbow pancyclic</i> if there is a rainbow cycle <i>C</i><sub>ℓ</sub> of length <i>ℓ</i> in <b>G</b> for each integer <i>ℓ</i> ∈ [3, <i>n</i>]. In 2020, Joos and Kim proved a rainbow version of Dirac’s theorem: If <span>\\(\\delta ({G_i}) \\ge {n \\over 2}\\)</span> for each <i>i</i> ∈ [<i>n</i>], then there is a rainbow Hamiltonian cycle in <b>G</b>. In this paper, under the same condition, we show that <b>G</b> is rainbow pancyclic except that <i>n</i> is even and <b>G</b> consists of <i>n</i> copies of <span>\\({K_{{n \\over 2},{n \\over 2}}}\\)</span>. This result supports the famous meta-conjecture posed by Bondy.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"40 2","pages":"269 - 274"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rainbow Pancyclicity in a Collection of Graphs Under the Dirac-type Condition\",\"authors\":\"Lu-yi Li, Ping Li, Xue-liang Li\",\"doi\":\"10.1007/s10255-024-1076-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <b>G</b> = {<i>G</i><sub><i>i</i></sub>: <i>i</i> ∈ [<i>n</i>]} be a collection of not necessarily distinct <i>n</i>-vertex graphs with the same vertex set <i>V</i>, where <b>G</b> can be seen as an edge-colored (multi)graph and each <i>G</i><sub><i>i</i></sub> is the set of edges with color <i>i</i>. A graph <i>F</i> on <i>V</i> is called <i>rainbow</i> if any two edges of <i>F</i> come from different <i>G</i><sub><i>i</i></sub>s’. We say that <b>G</b> is <i>rainbow pancyclic</i> if there is a rainbow cycle <i>C</i><sub>ℓ</sub> of length <i>ℓ</i> in <b>G</b> for each integer <i>ℓ</i> ∈ [3, <i>n</i>]. In 2020, Joos and Kim proved a rainbow version of Dirac’s theorem: If <span>\\\\(\\\\delta ({G_i}) \\\\ge {n \\\\over 2}\\\\)</span> for each <i>i</i> ∈ [<i>n</i>], then there is a rainbow Hamiltonian cycle in <b>G</b>. In this paper, under the same condition, we show that <b>G</b> is rainbow pancyclic except that <i>n</i> is even and <b>G</b> consists of <i>n</i> copies of <span>\\\\({K_{{n \\\\over 2},{n \\\\over 2}}}\\\\)</span>. This result supports the famous meta-conjecture posed by Bondy.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"40 2\",\"pages\":\"269 - 274\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1076-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1076-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
让 G = {Gi: i∈ [n]} 是具有相同顶点集 V 的不一定不同的 n 顶点图的集合,其中 G 可以看作是边着色(多)图,每个 Gi 是具有颜色 i 的边的集合。如果 F 的任意两条边来自不同的 Gis',则 V 上的图 F 称为彩虹图。对于每个整数 ℓ∈ [3, n],如果 G 中存在长度为 ℓ 的彩虹循环 Cℓ,我们就说 G 是彩虹泛循环图。2020 年,Joos 和 Kim 证明了狄拉克定理的彩虹版本:在本文中,在同样的条件下,我们证明了 G 是彩虹泛周期的,除了 n 是偶数,并且 G 由 n 份 \({K_{n \over 2},{n \over 2}}\) 组成。这一结果支持邦迪提出的著名元猜想。
Rainbow Pancyclicity in a Collection of Graphs Under the Dirac-type Condition
Let G = {Gi: i ∈ [n]} be a collection of not necessarily distinct n-vertex graphs with the same vertex set V, where G can be seen as an edge-colored (multi)graph and each Gi is the set of edges with color i. A graph F on V is called rainbow if any two edges of F come from different Gis’. We say that G is rainbow pancyclic if there is a rainbow cycle Cℓ of length ℓ in G for each integer ℓ ∈ [3, n]. In 2020, Joos and Kim proved a rainbow version of Dirac’s theorem: If \(\delta ({G_i}) \ge {n \over 2}\) for each i ∈ [n], then there is a rainbow Hamiltonian cycle in G. In this paper, under the same condition, we show that G is rainbow pancyclic except that n is even and G consists of n copies of \({K_{{n \over 2},{n \over 2}}}\). This result supports the famous meta-conjecture posed by Bondy.
期刊介绍:
Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.