燃烧杠铃的数量

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Hui-qing Liu, Rui-ting Zhang, Xiao-lan Hu
{"title":"燃烧杠铃的数量","authors":"Hui-qing Liu,&nbsp;Rui-ting Zhang,&nbsp;Xiao-lan Hu","doi":"10.1007/s10255-024-1113-8","DOIUrl":null,"url":null,"abstract":"<div><p>Motivated by a discrete-time process intended to measure the speed of the spread of contagion in a graph, the burning number <i>b</i>(<i>G</i>) of a graph <i>G</i>, is defined as the smallest integer <i>k</i> for which there are vertices <i>x</i><sub>1</sub>,…,<i>x</i><sub><i>k</i></sub> such that for every vertex <i>u</i> of <i>G</i>, there exists <i>i</i> ∈ {1,…,<i>k</i>} with <i>d</i><sub><i>G</i></sub>(<i>u, x</i><sub><i>i</i></sub>) ≤ <i>k</i> − <i>i</i>, and <i>d</i><sub><i>G</i></sub>(<i>x</i><sub><i>i</i></sub>, <i>x</i><sub><i>j</i></sub>) ≥ <i>j</i> − <i>i</i> for any 1 ≤ <i>i</i> &lt; <i>j</i> ≤ <i>k</i>. The graph burning problem has been shown to be NP-complete even for some acyclic graphs with maximum degree three. In this paper, we determine the burning numbers of all short barbells and long barbells, respectively.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"40 2","pages":"526 - 538"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Burning Numbers of Barbells\",\"authors\":\"Hui-qing Liu,&nbsp;Rui-ting Zhang,&nbsp;Xiao-lan Hu\",\"doi\":\"10.1007/s10255-024-1113-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Motivated by a discrete-time process intended to measure the speed of the spread of contagion in a graph, the burning number <i>b</i>(<i>G</i>) of a graph <i>G</i>, is defined as the smallest integer <i>k</i> for which there are vertices <i>x</i><sub>1</sub>,…,<i>x</i><sub><i>k</i></sub> such that for every vertex <i>u</i> of <i>G</i>, there exists <i>i</i> ∈ {1,…,<i>k</i>} with <i>d</i><sub><i>G</i></sub>(<i>u, x</i><sub><i>i</i></sub>) ≤ <i>k</i> − <i>i</i>, and <i>d</i><sub><i>G</i></sub>(<i>x</i><sub><i>i</i></sub>, <i>x</i><sub><i>j</i></sub>) ≥ <i>j</i> − <i>i</i> for any 1 ≤ <i>i</i> &lt; <i>j</i> ≤ <i>k</i>. The graph burning problem has been shown to be NP-complete even for some acyclic graphs with maximum degree three. In this paper, we determine the burning numbers of all short barbells and long barbells, respectively.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"40 2\",\"pages\":\"526 - 538\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1113-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1113-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

图 G 的燃烧数 b(G)定义为:对于图 G 的每个顶点 u,存在 i∈ {1,...,k},且 dG(u,xi)≤k-i,以及 dG(xi,xj)≥j-i(对于任意 1≤i <j≤k)的最小整数 k,对于该整数,存在顶点 x1,...,xk,且对于图 G 的每个顶点 u,存在 i∈ {1,...,k},且 dG(u,xi)≤k-i。即使对于某些最大阶数为三的无循环图,图燃烧问题也被证明是 NP-完全的。在本文中,我们将分别确定所有短杠铃和长杠铃的燃烧数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Burning Numbers of Barbells

Motivated by a discrete-time process intended to measure the speed of the spread of contagion in a graph, the burning number b(G) of a graph G, is defined as the smallest integer k for which there are vertices x1,…,xk such that for every vertex u of G, there exists i ∈ {1,…,k} with dG(u, xi) ≤ ki, and dG(xi, xj) ≥ ji for any 1 ≤ i < jk. The graph burning problem has been shown to be NP-complete even for some acyclic graphs with maximum degree three. In this paper, we determine the burning numbers of all short barbells and long barbells, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信