{"title":"等边树图上狄拉克算子的安巴尔祖米扬定理","authors":"Dong-Jie Wu, Xin-Jian Xu, Chuan-Fu Yang","doi":"10.1007/s10255-024-1042-6","DOIUrl":null,"url":null,"abstract":"<div><p>The classical Ambarzumyan’s theorem states that if the Neumann eigenvalues of the Sturm-Liouville operator <span>\\( - {{{d^2}} \\over {d{x^2}}} + q\\)</span> with an integrable real-valued potential <i>q</i> on [0, π] are {<i>n</i><sup>2</sup>: <i>n</i> ≥ 0}, then <i>q</i> = 0 for almost all <i>x</i> ∈ [0, <i>π</i>]. In this work, the classical Ambarzumyan’s theorem is extended to the Dirac operator on equilateral tree graphs. We prove that if the spectrum of the Dirac operator on graphs coincides with the unperturbed case, then the potential is identically zero.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"40 2","pages":"568 - 576"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ambarzumyan’s Theorem for the Dirac Operator on Equilateral Tree Graphs\",\"authors\":\"Dong-Jie Wu, Xin-Jian Xu, Chuan-Fu Yang\",\"doi\":\"10.1007/s10255-024-1042-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The classical Ambarzumyan’s theorem states that if the Neumann eigenvalues of the Sturm-Liouville operator <span>\\\\( - {{{d^2}} \\\\over {d{x^2}}} + q\\\\)</span> with an integrable real-valued potential <i>q</i> on [0, π] are {<i>n</i><sup>2</sup>: <i>n</i> ≥ 0}, then <i>q</i> = 0 for almost all <i>x</i> ∈ [0, <i>π</i>]. In this work, the classical Ambarzumyan’s theorem is extended to the Dirac operator on equilateral tree graphs. We prove that if the spectrum of the Dirac operator on graphs coincides with the unperturbed case, then the potential is identically zero.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"40 2\",\"pages\":\"568 - 576\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1042-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1042-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Ambarzumyan’s Theorem for the Dirac Operator on Equilateral Tree Graphs
The classical Ambarzumyan’s theorem states that if the Neumann eigenvalues of the Sturm-Liouville operator \( - {{{d^2}} \over {d{x^2}}} + q\) with an integrable real-valued potential q on [0, π] are {n2: n ≥ 0}, then q = 0 for almost all x ∈ [0, π]. In this work, the classical Ambarzumyan’s theorem is extended to the Dirac operator on equilateral tree graphs. We prove that if the spectrum of the Dirac operator on graphs coincides with the unperturbed case, then the potential is identically zero.
期刊介绍:
Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.