Jie Fei Yang, Xia Luo, Dezhi Liu, Hanming Gu, Ming Sun
{"title":"基于低阶自适应交映几何分解的地震噪声衰减方法","authors":"Jie Fei Yang, Xia Luo, Dezhi Liu, Hanming Gu, Ming Sun","doi":"10.1111/1365-2478.13504","DOIUrl":null,"url":null,"abstract":"<p>The basic assumption of low-rank methods is that noise-free seismic data can be represented as a low-rank matrix. Effective noise reduction can be achieved through the low-rank approximation of Hankel matrices composed of the data. However, selecting the appropriate rank parameter and avoiding expensive singular value decomposition are two challenges that have limited the practical application of this method. In this paper, we first propose symplectic geometric decomposition that avoids singular value decomposition. The symplectic similarity transformation preserves the essence of the original time sequence as well as the signal's basic characteristics and maintains the approximation of the Hankel matrix. To select an appropriate rank, we construct the symplectic geometric entropy according to the distribution of eigenvalues and search for high-contributing eigenvalues to determine the needed rank parameter. Therefore, we provide an adaptive approach to selecting the rank parameter by the symplectic geometric entropy method. The synthetic examples and field data results show that our method significantly improves the computational efficiency while adaptively retaining more effective signals in complex structures. Therefore, this method has practical application value.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"72 6","pages":"2148-2163"},"PeriodicalIF":1.8000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seismic noise attenuation method based on low-rank adaptive symplectic geometry decomposition\",\"authors\":\"Jie Fei Yang, Xia Luo, Dezhi Liu, Hanming Gu, Ming Sun\",\"doi\":\"10.1111/1365-2478.13504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The basic assumption of low-rank methods is that noise-free seismic data can be represented as a low-rank matrix. Effective noise reduction can be achieved through the low-rank approximation of Hankel matrices composed of the data. However, selecting the appropriate rank parameter and avoiding expensive singular value decomposition are two challenges that have limited the practical application of this method. In this paper, we first propose symplectic geometric decomposition that avoids singular value decomposition. The symplectic similarity transformation preserves the essence of the original time sequence as well as the signal's basic characteristics and maintains the approximation of the Hankel matrix. To select an appropriate rank, we construct the symplectic geometric entropy according to the distribution of eigenvalues and search for high-contributing eigenvalues to determine the needed rank parameter. Therefore, we provide an adaptive approach to selecting the rank parameter by the symplectic geometric entropy method. The synthetic examples and field data results show that our method significantly improves the computational efficiency while adaptively retaining more effective signals in complex structures. Therefore, this method has practical application value.</p>\",\"PeriodicalId\":12793,\"journal\":{\"name\":\"Geophysical Prospecting\",\"volume\":\"72 6\",\"pages\":\"2148-2163\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Prospecting\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13504\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13504","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Seismic noise attenuation method based on low-rank adaptive symplectic geometry decomposition
The basic assumption of low-rank methods is that noise-free seismic data can be represented as a low-rank matrix. Effective noise reduction can be achieved through the low-rank approximation of Hankel matrices composed of the data. However, selecting the appropriate rank parameter and avoiding expensive singular value decomposition are two challenges that have limited the practical application of this method. In this paper, we first propose symplectic geometric decomposition that avoids singular value decomposition. The symplectic similarity transformation preserves the essence of the original time sequence as well as the signal's basic characteristics and maintains the approximation of the Hankel matrix. To select an appropriate rank, we construct the symplectic geometric entropy according to the distribution of eigenvalues and search for high-contributing eigenvalues to determine the needed rank parameter. Therefore, we provide an adaptive approach to selecting the rank parameter by the symplectic geometric entropy method. The synthetic examples and field data results show that our method significantly improves the computational efficiency while adaptively retaining more effective signals in complex structures. Therefore, this method has practical application value.
期刊介绍:
Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.