{"title":"异质介质中反应-扩散-ODE 系统的动力学特性","authors":"Cong-hui Zhang, Hai-feng Zhang, Mei-rong Zhang","doi":"10.1007/s10255-024-1084-9","DOIUrl":null,"url":null,"abstract":"<div><p>The existence and stability of stationary solutions for a reaction-diffusion-ODE system are investigated in this paper. We first show that there exist both continuous and discontinuous stationary solutions. Then a good understanding of the stability of discontinuous stationary solutions is gained under an appropriate condition. In addition, we demonstrate the influences of the diffusion coefficient on stationary solutions. The results we obtained are based on the super-/sub-solution method and the generalized mountain pass theorem. Finally, some numerical simulations are given to illustrate the theoretical results.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of a Reaction-diffusion-ODE System in a Heterogeneous Media\",\"authors\":\"Cong-hui Zhang, Hai-feng Zhang, Mei-rong Zhang\",\"doi\":\"10.1007/s10255-024-1084-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The existence and stability of stationary solutions for a reaction-diffusion-ODE system are investigated in this paper. We first show that there exist both continuous and discontinuous stationary solutions. Then a good understanding of the stability of discontinuous stationary solutions is gained under an appropriate condition. In addition, we demonstrate the influences of the diffusion coefficient on stationary solutions. The results we obtained are based on the super-/sub-solution method and the generalized mountain pass theorem. Finally, some numerical simulations are given to illustrate the theoretical results.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1084-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1084-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamics of a Reaction-diffusion-ODE System in a Heterogeneous Media
The existence and stability of stationary solutions for a reaction-diffusion-ODE system are investigated in this paper. We first show that there exist both continuous and discontinuous stationary solutions. Then a good understanding of the stability of discontinuous stationary solutions is gained under an appropriate condition. In addition, we demonstrate the influences of the diffusion coefficient on stationary solutions. The results we obtained are based on the super-/sub-solution method and the generalized mountain pass theorem. Finally, some numerical simulations are given to illustrate the theoretical results.