{"title":"实数和复数浮点运算中的精确霍纳方法","authors":"Thomas R. Cameron, Stef Graillat","doi":"10.1007/s10543-024-01017-w","DOIUrl":null,"url":null,"abstract":"<p>In this article, we derive accurate Horner methods in real and complex floating-point arithmetic. In particular, we show that these methods are as accurate as if computed in <i>k</i>-fold precision and then rounded into the working precision. When <i>k</i> is two, our methods are comparable or faster than the existing compensated Horner routines. When compared to multi-precision software, such as MPFR and MPC, our methods are significantly faster, up to <i>k</i> equal to eight, that is, up to 489 bits in the significand.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate Horner methods in real and complex floating-point arithmetic\",\"authors\":\"Thomas R. Cameron, Stef Graillat\",\"doi\":\"10.1007/s10543-024-01017-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we derive accurate Horner methods in real and complex floating-point arithmetic. In particular, we show that these methods are as accurate as if computed in <i>k</i>-fold precision and then rounded into the working precision. When <i>k</i> is two, our methods are comparable or faster than the existing compensated Horner routines. When compared to multi-precision software, such as MPFR and MPC, our methods are significantly faster, up to <i>k</i> equal to eight, that is, up to 489 bits in the significand.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10543-024-01017-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10543-024-01017-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们推导了实数和复数浮点运算中精确的霍纳方法。特别是,我们证明这些方法的精确度与以 k 倍精度计算,然后四舍五入到工作精度的方法相同。当 k 为 2 时,我们的方法与现有的补偿霍纳例程不相上下,甚至更快。与多精度软件(如 MPFR 和 MPC)相比,我们的方法速度明显更快,最高可达 k 等于 8,即有效值可达 489 位。
Accurate Horner methods in real and complex floating-point arithmetic
In this article, we derive accurate Horner methods in real and complex floating-point arithmetic. In particular, we show that these methods are as accurate as if computed in k-fold precision and then rounded into the working precision. When k is two, our methods are comparable or faster than the existing compensated Horner routines. When compared to multi-precision software, such as MPFR and MPC, our methods are significantly faster, up to k equal to eight, that is, up to 489 bits in the significand.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.