{"title":"连续热解过程中竹炭理化性质的演变及其相关性","authors":"Jiajun Wang, Zhenrui Li, Yujun Li, Zhihui Wang, Xing’e Liu, Zhenzhen Liu, Jianfeng Ma","doi":"10.1007/s42773-024-00321-6","DOIUrl":null,"url":null,"abstract":"<p>This study investigated the effects of bamboo age, bamboo parts, and pyrolysis temperatures on the physiochemical properties of bamboo char throughout a series of pyrolysis processes spanning from 150 °C to 1000 °C. The results indicated that as the pyrolysis temperature increased from 150 °C to 500 °C, the yield of bamboo char experienced a rapid decline, settling at a maximum of 69%, with no significant impact from bamboo age and parts. Subsequently, as the pyrolysis temperature continued to rise from 500 °C to 1000 °C, the yield stabilized at 25.74–32.64%. Besides, fixed carbon (FC), volatile matter (VM), and ash content were temperature-dependent, while the H/C, O/C, (N + O)/C, and aromatic index kept constant after reaching 500 °C. Notably, 800 °C was confirmed to be a crucial turning point for physiochemical properties, at which the graphitic structural changes occurred, pore collapsed, and potassium salts released. Bamboo age was proved to enhance the stability. Pearson correlation coefficient (PCC) analysis revealed that the pyrolysis temperature was positively correlated (<i>p</i> < 0.01) with ash (0.76), FC (0.97), AI (0.81), R<sub>50</sub> (0.77), and C–C/C = C/C–H (0.87). Conversely, negative correlations (<i>p</i> < 0.01) were observed with VM (−0.91), O/C (0.88), H/C (−0.95), (N + O)/C (−0.87), C loss (−0.79), and labile organic-C (−0.78). Additionally, bamboo age was negatively correlated (<i>p</i> < 0.01) with C loss (−0.40), volatile organic-C (−0.63), labile organic-C (−0.45), and recalcitrant organic-C (−0.40), but positively associated with R<sub>50</sub> (0.54), refractory organic-C (0.42), and inorganic-C (0.52). Bamboo parts did not exhibit significant correlations with char properties.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"26 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolution and correlation of the physiochemical properties of bamboo char under successive pyrolysis process\",\"authors\":\"Jiajun Wang, Zhenrui Li, Yujun Li, Zhihui Wang, Xing’e Liu, Zhenzhen Liu, Jianfeng Ma\",\"doi\":\"10.1007/s42773-024-00321-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigated the effects of bamboo age, bamboo parts, and pyrolysis temperatures on the physiochemical properties of bamboo char throughout a series of pyrolysis processes spanning from 150 °C to 1000 °C. The results indicated that as the pyrolysis temperature increased from 150 °C to 500 °C, the yield of bamboo char experienced a rapid decline, settling at a maximum of 69%, with no significant impact from bamboo age and parts. Subsequently, as the pyrolysis temperature continued to rise from 500 °C to 1000 °C, the yield stabilized at 25.74–32.64%. Besides, fixed carbon (FC), volatile matter (VM), and ash content were temperature-dependent, while the H/C, O/C, (N + O)/C, and aromatic index kept constant after reaching 500 °C. Notably, 800 °C was confirmed to be a crucial turning point for physiochemical properties, at which the graphitic structural changes occurred, pore collapsed, and potassium salts released. Bamboo age was proved to enhance the stability. Pearson correlation coefficient (PCC) analysis revealed that the pyrolysis temperature was positively correlated (<i>p</i> < 0.01) with ash (0.76), FC (0.97), AI (0.81), R<sub>50</sub> (0.77), and C–C/C = C/C–H (0.87). Conversely, negative correlations (<i>p</i> < 0.01) were observed with VM (−0.91), O/C (0.88), H/C (−0.95), (N + O)/C (−0.87), C loss (−0.79), and labile organic-C (−0.78). Additionally, bamboo age was negatively correlated (<i>p</i> < 0.01) with C loss (−0.40), volatile organic-C (−0.63), labile organic-C (−0.45), and recalcitrant organic-C (−0.40), but positively associated with R<sub>50</sub> (0.54), refractory organic-C (0.42), and inorganic-C (0.52). Bamboo parts did not exhibit significant correlations with char properties.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":8789,\"journal\":{\"name\":\"Biochar\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochar\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s42773-024-00321-6\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochar","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s42773-024-00321-6","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
本研究考察了在 150 ℃ 至 1000 ℃ 的一系列热解过程中,竹龄、竹材部位和热解温度对竹炭理化性质的影响。结果表明,当热解温度从 150 °C 升至 500 °C 时,竹炭的产率迅速下降,最高为 69%,而竹龄和竹节对其影响不大。随后,随着热解温度从 500 °C 继续升高至 1000 °C,产率稳定在 25.74% 至 32.64%。此外,固定碳(FC)、挥发物(VM)和灰分含量与温度有关,而 H/C、O/C、(N + O)/C 和芳香指数在达到 500 °C 后保持不变。值得注意的是,800 °C 被证实是理化性质的关键转折点,在此温度下,石墨结构发生变化,孔隙塌陷,钾盐释放。竹龄被证明可提高稳定性。皮尔逊相关系数(PCC)分析表明,热解温度与灰分(0.76)、FC(0.97)、AI(0.81)、R50(0.77)和 C-C/C = C/C-H(0.87)呈正相关(p < 0.01)。相反,与 VM (-0.91)、O/C (0.88)、H/C (-0.95)、(N + O)/C (-0.87)、C 损失 (-0.79) 和易变有机碳 (-0.78) 呈负相关(p < 0.01)。此外,竹龄与碳损失(-0.40)、挥发性有机碳(-0.63)、易腐有机碳(-0.45)和难降解有机碳(-0.40)呈负相关(p < 0.01),但与 R50(0.54)、难降解有机碳(0.42)和无机碳(0.52)呈正相关。竹子部分与炭的特性没有明显的相关性。
Evolution and correlation of the physiochemical properties of bamboo char under successive pyrolysis process
This study investigated the effects of bamboo age, bamboo parts, and pyrolysis temperatures on the physiochemical properties of bamboo char throughout a series of pyrolysis processes spanning from 150 °C to 1000 °C. The results indicated that as the pyrolysis temperature increased from 150 °C to 500 °C, the yield of bamboo char experienced a rapid decline, settling at a maximum of 69%, with no significant impact from bamboo age and parts. Subsequently, as the pyrolysis temperature continued to rise from 500 °C to 1000 °C, the yield stabilized at 25.74–32.64%. Besides, fixed carbon (FC), volatile matter (VM), and ash content were temperature-dependent, while the H/C, O/C, (N + O)/C, and aromatic index kept constant after reaching 500 °C. Notably, 800 °C was confirmed to be a crucial turning point for physiochemical properties, at which the graphitic structural changes occurred, pore collapsed, and potassium salts released. Bamboo age was proved to enhance the stability. Pearson correlation coefficient (PCC) analysis revealed that the pyrolysis temperature was positively correlated (p < 0.01) with ash (0.76), FC (0.97), AI (0.81), R50 (0.77), and C–C/C = C/C–H (0.87). Conversely, negative correlations (p < 0.01) were observed with VM (−0.91), O/C (0.88), H/C (−0.95), (N + O)/C (−0.87), C loss (−0.79), and labile organic-C (−0.78). Additionally, bamboo age was negatively correlated (p < 0.01) with C loss (−0.40), volatile organic-C (−0.63), labile organic-C (−0.45), and recalcitrant organic-C (−0.40), but positively associated with R50 (0.54), refractory organic-C (0.42), and inorganic-C (0.52). Bamboo parts did not exhibit significant correlations with char properties.
期刊介绍:
Biochar stands as a distinguished academic journal delving into multidisciplinary subjects such as agronomy, environmental science, and materials science. Its pages showcase innovative articles spanning the preparation and processing of biochar, exploring its diverse applications, including but not limited to bioenergy production, biochar-based materials for environmental use, soil enhancement, climate change mitigation, contaminated-environment remediation, water purification, new analytical techniques, life cycle assessment, and crucially, rural and regional development. Biochar publishes various article types, including reviews, original research, rapid reports, commentaries, and perspectives, with the overarching goal of reporting significant research achievements, critical reviews fostering a deeper mechanistic understanding of the science, and facilitating academic exchange to drive scientific and technological development.