Md Mohasin Howlader , Fred Mannering , Md Mazharul Haque
{"title":"考虑多种交通冲突和碰撞类型,估算碰撞风险和伤害严重程度:双变量极值法","authors":"Md Mohasin Howlader , Fred Mannering , Md Mazharul Haque","doi":"10.1016/j.amar.2024.100331","DOIUrl":null,"url":null,"abstract":"<div><p>Traffic conflicts are generally considered independent events in existing extreme value theory models to estimate the risk of total or single types of crashes. However, traffic events at a road entity are not necessarily independent interactions and can lead to multiple traffic conflicts with shared common unobserved factors. A comprehensive estimation of crash risks in a road entity needs to consider the correlation of potential traffic conflicts to avoid possible bias in prediction performance and the problem of undetected deficiencies. This study proposes a Bayesian non-stationary bivariate generalised extreme value modelling framework to estimate the severe and non-severe crash risks accounting for the correlation between right-turn and rear-end conflicts at signalised intersections. A deep neural network-based computer vision technique was applied to extract the traffic conflicts from 77 h of video recordings over two right-turn approaches at two signalised intersections in Cairns, Australia. Post encroachment time and modified time to collision were used to characterise right-turn and rear-end conflicts, respectively, while an expected post-collision velocity difference was combined with post encroachment time and modified time to collision for crash risk estimation by injury severity levels. Several covariates were used to address the time-varying heterogeneity of traffic conflict extremes and to estimate the differential crash risks at signal cycles. Results showed a significant correlation between right-turn and rear-end crashes at signal cycle levels, indicating the importance of accounting for the dependency among traffic conflict types. Overall, the bivariate models considering the correlation among traffic conflict types were found to understandably perform better than their univariate counterparts. This study provides a demonstration of a correlated crash risk modelling framework that addresses issues related to the suitable traffic conflict measures, time varying risks (non-stationarity), heterogeneity, and injury severity levels of different crash types.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"42 ","pages":"Article 100331"},"PeriodicalIF":12.5000,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213665724000150/pdfft?md5=6bc905ca260e0b524a0447807f24d14f&pid=1-s2.0-S2213665724000150-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Estimating crash risk and injury severity considering multiple traffic conflict and crash types: A bivariate extreme value approach\",\"authors\":\"Md Mohasin Howlader , Fred Mannering , Md Mazharul Haque\",\"doi\":\"10.1016/j.amar.2024.100331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Traffic conflicts are generally considered independent events in existing extreme value theory models to estimate the risk of total or single types of crashes. However, traffic events at a road entity are not necessarily independent interactions and can lead to multiple traffic conflicts with shared common unobserved factors. A comprehensive estimation of crash risks in a road entity needs to consider the correlation of potential traffic conflicts to avoid possible bias in prediction performance and the problem of undetected deficiencies. This study proposes a Bayesian non-stationary bivariate generalised extreme value modelling framework to estimate the severe and non-severe crash risks accounting for the correlation between right-turn and rear-end conflicts at signalised intersections. A deep neural network-based computer vision technique was applied to extract the traffic conflicts from 77 h of video recordings over two right-turn approaches at two signalised intersections in Cairns, Australia. Post encroachment time and modified time to collision were used to characterise right-turn and rear-end conflicts, respectively, while an expected post-collision velocity difference was combined with post encroachment time and modified time to collision for crash risk estimation by injury severity levels. Several covariates were used to address the time-varying heterogeneity of traffic conflict extremes and to estimate the differential crash risks at signal cycles. Results showed a significant correlation between right-turn and rear-end crashes at signal cycle levels, indicating the importance of accounting for the dependency among traffic conflict types. Overall, the bivariate models considering the correlation among traffic conflict types were found to understandably perform better than their univariate counterparts. This study provides a demonstration of a correlated crash risk modelling framework that addresses issues related to the suitable traffic conflict measures, time varying risks (non-stationarity), heterogeneity, and injury severity levels of different crash types.</p></div>\",\"PeriodicalId\":47520,\"journal\":{\"name\":\"Analytic Methods in Accident Research\",\"volume\":\"42 \",\"pages\":\"Article 100331\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2024-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2213665724000150/pdfft?md5=6bc905ca260e0b524a0447807f24d14f&pid=1-s2.0-S2213665724000150-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytic Methods in Accident Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213665724000150\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytic Methods in Accident Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213665724000150","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Estimating crash risk and injury severity considering multiple traffic conflict and crash types: A bivariate extreme value approach
Traffic conflicts are generally considered independent events in existing extreme value theory models to estimate the risk of total or single types of crashes. However, traffic events at a road entity are not necessarily independent interactions and can lead to multiple traffic conflicts with shared common unobserved factors. A comprehensive estimation of crash risks in a road entity needs to consider the correlation of potential traffic conflicts to avoid possible bias in prediction performance and the problem of undetected deficiencies. This study proposes a Bayesian non-stationary bivariate generalised extreme value modelling framework to estimate the severe and non-severe crash risks accounting for the correlation between right-turn and rear-end conflicts at signalised intersections. A deep neural network-based computer vision technique was applied to extract the traffic conflicts from 77 h of video recordings over two right-turn approaches at two signalised intersections in Cairns, Australia. Post encroachment time and modified time to collision were used to characterise right-turn and rear-end conflicts, respectively, while an expected post-collision velocity difference was combined with post encroachment time and modified time to collision for crash risk estimation by injury severity levels. Several covariates were used to address the time-varying heterogeneity of traffic conflict extremes and to estimate the differential crash risks at signal cycles. Results showed a significant correlation between right-turn and rear-end crashes at signal cycle levels, indicating the importance of accounting for the dependency among traffic conflict types. Overall, the bivariate models considering the correlation among traffic conflict types were found to understandably perform better than their univariate counterparts. This study provides a demonstration of a correlated crash risk modelling framework that addresses issues related to the suitable traffic conflict measures, time varying risks (non-stationarity), heterogeneity, and injury severity levels of different crash types.
期刊介绍:
Analytic Methods in Accident Research is a journal that publishes articles related to the development and application of advanced statistical and econometric methods in studying vehicle crashes and other accidents. The journal aims to demonstrate how these innovative approaches can provide new insights into the factors influencing the occurrence and severity of accidents, thereby offering guidance for implementing appropriate preventive measures. While the journal primarily focuses on the analytic approach, it also accepts articles covering various aspects of transportation safety (such as road, pedestrian, air, rail, and water safety), construction safety, and other areas where human behavior, machine failures, or system failures lead to property damage or bodily harm.