Stefan Grosser , Hamed Hatami , Peter Nelson , Sergey Norin
{"title":"二元矩阵遗传特性的典型结构","authors":"Stefan Grosser , Hamed Hatami , Peter Nelson , Sergey Norin","doi":"10.1016/j.jctb.2024.03.001","DOIUrl":null,"url":null,"abstract":"<div><p>We prove an arithmetic analogue of the typical structure theorem for graph hereditary properties due to Alon, Balogh, Bollobás and Morris <span>[2]</span>.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"167 ","pages":"Pages 283-302"},"PeriodicalIF":1.2000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Typical structure of hereditary properties of binary matroids\",\"authors\":\"Stefan Grosser , Hamed Hatami , Peter Nelson , Sergey Norin\",\"doi\":\"10.1016/j.jctb.2024.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove an arithmetic analogue of the typical structure theorem for graph hereditary properties due to Alon, Balogh, Bollobás and Morris <span>[2]</span>.</p></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"167 \",\"pages\":\"Pages 283-302\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000194\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000194","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.