{"title":"鸟类的嗅觉系统和海马:嗅觉和视觉引导归巢鸽导航的互补作用","authors":"Anna Gagliardo , Verner P. Bingman","doi":"10.1016/j.conb.2024.102870","DOIUrl":null,"url":null,"abstract":"<div><p>The homing pigeon is the foundational model species used to investigate the neural control of avian navigation. The olfactory system is critically involved in implementing the so-called olfactory map, used to locate position relative to home from unfamiliar locations. The hippocampal formation supports a complementary navigational system based on familiar visual landmarks. Insight into the neural control of pigeon navigation has been revolutionised by GPS-tracking technology, which has been crucial for both detailing the critical role of environmental odours for navigation over unfamiliar areas as well as offering unprecedented insight into the role of the hippocampal formation in visual landscape/landmark-based navigation, including a possible, unexpected role in visual–spatial perception.</p></div>","PeriodicalId":10999,"journal":{"name":"Current Opinion in Neurobiology","volume":"86 ","pages":"Article 102870"},"PeriodicalIF":4.8000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959438824000321/pdfft?md5=16844e4aca649e069f5a432aecf38dd0&pid=1-s2.0-S0959438824000321-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The avian olfactory system and hippocampus: Complementary roles in the olfactory and visual guidance of homing pigeon navigation\",\"authors\":\"Anna Gagliardo , Verner P. Bingman\",\"doi\":\"10.1016/j.conb.2024.102870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The homing pigeon is the foundational model species used to investigate the neural control of avian navigation. The olfactory system is critically involved in implementing the so-called olfactory map, used to locate position relative to home from unfamiliar locations. The hippocampal formation supports a complementary navigational system based on familiar visual landmarks. Insight into the neural control of pigeon navigation has been revolutionised by GPS-tracking technology, which has been crucial for both detailing the critical role of environmental odours for navigation over unfamiliar areas as well as offering unprecedented insight into the role of the hippocampal formation in visual landscape/landmark-based navigation, including a possible, unexpected role in visual–spatial perception.</p></div>\",\"PeriodicalId\":10999,\"journal\":{\"name\":\"Current Opinion in Neurobiology\",\"volume\":\"86 \",\"pages\":\"Article 102870\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0959438824000321/pdfft?md5=16844e4aca649e069f5a432aecf38dd0&pid=1-s2.0-S0959438824000321-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959438824000321\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959438824000321","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
The avian olfactory system and hippocampus: Complementary roles in the olfactory and visual guidance of homing pigeon navigation
The homing pigeon is the foundational model species used to investigate the neural control of avian navigation. The olfactory system is critically involved in implementing the so-called olfactory map, used to locate position relative to home from unfamiliar locations. The hippocampal formation supports a complementary navigational system based on familiar visual landmarks. Insight into the neural control of pigeon navigation has been revolutionised by GPS-tracking technology, which has been crucial for both detailing the critical role of environmental odours for navigation over unfamiliar areas as well as offering unprecedented insight into the role of the hippocampal formation in visual landscape/landmark-based navigation, including a possible, unexpected role in visual–spatial perception.
期刊介绍:
Current Opinion in Neurobiology publishes short annotated reviews by leading experts on recent developments in the field of neurobiology. These experts write short reviews describing recent discoveries in this field (in the past 2-5 years), as well as highlighting select individual papers of particular significance.
The journal is thus an important resource allowing researchers and educators to quickly gain an overview and rich understanding of complex and current issues in the field of Neurobiology. The journal takes a unique and valuable approach in focusing each special issue around a topic of scientific and/or societal interest, and then bringing together leading international experts studying that topic, embracing diverse methodologies and perspectives.
Journal Content: The journal consists of 6 issues per year, covering 8 recurring topics every other year in the following categories:
-Neurobiology of Disease-
Neurobiology of Behavior-
Cellular Neuroscience-
Systems Neuroscience-
Developmental Neuroscience-
Neurobiology of Learning and Plasticity-
Molecular Neuroscience-
Computational Neuroscience