Carolina Rodrigues de Souza, Ana Rosa Costa, Lincoln Pires Silva Borges, Analia Gabriella Borges Ferraz, Rafael Leonardo Xediek Consani, Rafael Rocha Pacheco, Américo Bortolazzo Correr, Lourenço Correr-Sobrinho
{"title":"陶瓷厚度对热循环前后树脂洗脱剂粘接强度的影响","authors":"Carolina Rodrigues de Souza, Ana Rosa Costa, Lincoln Pires Silva Borges, Analia Gabriella Borges Ferraz, Rafael Leonardo Xediek Consani, Rafael Rocha Pacheco, Américo Bortolazzo Correr, Lourenço Correr-Sobrinho","doi":"10.1590/0103-6440202405619","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated microshear bond strength (µSBS) of two (2) dual-cured resin-luting agents (RelyX™ Ultimate and RelyX™ U200) when photoactivated through varying thicknesses of lithium disilicate, with or without thermal cycling. Discs of IPS e.max Press of 0.5, 1.5, and 2 mm in thickness were obtained. Elastomer molds (3.0 mm in thickness) with four cylinder-shaped orifices 1.0 mm in diameter, were placed onto the ceramic surfaces and filled with resin-luting agents. A Mylar strip, glass plate, and load of 250 grams were placed over the filled mold. The load was removed and the resin-luting agents were photoactivated through the ceramics using a single-peak LED (Radii Plus.) All samples were stored in distilled water at 37oC for 24 h. Half of the samples were subjected to thermal cycling (3,000 cycles; 5ºC and 55ºC). All samples were then submitted to µSBS test using a universal testing machine (Instron 4411) at a crosshead speed of 0.5 mm/min. Data were submitted to three-way ANOVA and Tukey post-hoc test (α=0.05). The mean µSBS at 24 h was significantly higher than after thermal cycling (p<0.05). No statistical difference was found between resin-luting agents (p > 0.05). The mean µSBS for groups photoactivated through 0.5 mm ceramic were significantly higher than 1.5 mm and 2.0 mm (p < 0.05). In conclusion, increased ceramic thicknesses reduced the bond strength of tested resin-luting agents to lithium disilicate. No differences were found between resin-luting agents. Thermal cycling reduced the bond strength of both resin-luting agents.</p>","PeriodicalId":101363,"journal":{"name":"Brazilian dental journal","volume":"35 ","pages":"e245619"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10976309/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effect of Ceramic Thickness on the Bond Strength to Resin-Luting Agents before and after Thermal Cycling.\",\"authors\":\"Carolina Rodrigues de Souza, Ana Rosa Costa, Lincoln Pires Silva Borges, Analia Gabriella Borges Ferraz, Rafael Leonardo Xediek Consani, Rafael Rocha Pacheco, Américo Bortolazzo Correr, Lourenço Correr-Sobrinho\",\"doi\":\"10.1590/0103-6440202405619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigated microshear bond strength (µSBS) of two (2) dual-cured resin-luting agents (RelyX™ Ultimate and RelyX™ U200) when photoactivated through varying thicknesses of lithium disilicate, with or without thermal cycling. Discs of IPS e.max Press of 0.5, 1.5, and 2 mm in thickness were obtained. Elastomer molds (3.0 mm in thickness) with four cylinder-shaped orifices 1.0 mm in diameter, were placed onto the ceramic surfaces and filled with resin-luting agents. A Mylar strip, glass plate, and load of 250 grams were placed over the filled mold. The load was removed and the resin-luting agents were photoactivated through the ceramics using a single-peak LED (Radii Plus.) All samples were stored in distilled water at 37oC for 24 h. Half of the samples were subjected to thermal cycling (3,000 cycles; 5ºC and 55ºC). All samples were then submitted to µSBS test using a universal testing machine (Instron 4411) at a crosshead speed of 0.5 mm/min. Data were submitted to three-way ANOVA and Tukey post-hoc test (α=0.05). The mean µSBS at 24 h was significantly higher than after thermal cycling (p<0.05). No statistical difference was found between resin-luting agents (p > 0.05). The mean µSBS for groups photoactivated through 0.5 mm ceramic were significantly higher than 1.5 mm and 2.0 mm (p < 0.05). In conclusion, increased ceramic thicknesses reduced the bond strength of tested resin-luting agents to lithium disilicate. No differences were found between resin-luting agents. Thermal cycling reduced the bond strength of both resin-luting agents.</p>\",\"PeriodicalId\":101363,\"journal\":{\"name\":\"Brazilian dental journal\",\"volume\":\"35 \",\"pages\":\"e245619\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10976309/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian dental journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/0103-6440202405619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian dental journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/0103-6440202405619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Ceramic Thickness on the Bond Strength to Resin-Luting Agents before and after Thermal Cycling.
This study investigated microshear bond strength (µSBS) of two (2) dual-cured resin-luting agents (RelyX™ Ultimate and RelyX™ U200) when photoactivated through varying thicknesses of lithium disilicate, with or without thermal cycling. Discs of IPS e.max Press of 0.5, 1.5, and 2 mm in thickness were obtained. Elastomer molds (3.0 mm in thickness) with four cylinder-shaped orifices 1.0 mm in diameter, were placed onto the ceramic surfaces and filled with resin-luting agents. A Mylar strip, glass plate, and load of 250 grams were placed over the filled mold. The load was removed and the resin-luting agents were photoactivated through the ceramics using a single-peak LED (Radii Plus.) All samples were stored in distilled water at 37oC for 24 h. Half of the samples were subjected to thermal cycling (3,000 cycles; 5ºC and 55ºC). All samples were then submitted to µSBS test using a universal testing machine (Instron 4411) at a crosshead speed of 0.5 mm/min. Data were submitted to three-way ANOVA and Tukey post-hoc test (α=0.05). The mean µSBS at 24 h was significantly higher than after thermal cycling (p<0.05). No statistical difference was found between resin-luting agents (p > 0.05). The mean µSBS for groups photoactivated through 0.5 mm ceramic were significantly higher than 1.5 mm and 2.0 mm (p < 0.05). In conclusion, increased ceramic thicknesses reduced the bond strength of tested resin-luting agents to lithium disilicate. No differences were found between resin-luting agents. Thermal cycling reduced the bond strength of both resin-luting agents.