{"title":"规模结构化消费者与非结构化资源之间互动的非自主模型。","authors":"Zhuxin Ni, Qihua Huang","doi":"10.1007/s00285-024-02071-2","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we propose and analyze a nonautonomous model that describes the dynamics of a size-structured consumer interacting with an unstructured resource. We prove the existence and uniqueness of the solution of the model using the monotone method based on a comparison principle. We derive conditions on the model parameters that result in persistence and extinction of the population via the upper-lower solution technique. We verify and complement the theoretical results through numerical simulations.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A nonautonomous model for the interaction between a size-structured consumer and an unstructured resource.\",\"authors\":\"Zhuxin Ni, Qihua Huang\",\"doi\":\"10.1007/s00285-024-02071-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we propose and analyze a nonautonomous model that describes the dynamics of a size-structured consumer interacting with an unstructured resource. We prove the existence and uniqueness of the solution of the model using the monotone method based on a comparison principle. We derive conditions on the model parameters that result in persistence and extinction of the population via the upper-lower solution technique. We verify and complement the theoretical results through numerical simulations.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00285-024-02071-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02071-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A nonautonomous model for the interaction between a size-structured consumer and an unstructured resource.
In this paper, we propose and analyze a nonautonomous model that describes the dynamics of a size-structured consumer interacting with an unstructured resource. We prove the existence and uniqueness of the solution of the model using the monotone method based on a comparison principle. We derive conditions on the model parameters that result in persistence and extinction of the population via the upper-lower solution technique. We verify and complement the theoretical results through numerical simulations.