在掺硼金刚石电极上用伏安法测定药用儿茶酚-O-甲基转移酶抑制剂托卡朋。

IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Turkish Journal of Chemistry Pub Date : 2023-11-02 eCollection Date: 2024-01-01 DOI:10.55730/1300-0527.3650
Musa Kiran, Yavuz Yardim
{"title":"在掺硼金刚石电极上用伏安法测定药用儿茶酚-O-甲基转移酶抑制剂托卡朋。","authors":"Musa Kiran, Yavuz Yardim","doi":"10.55730/1300-0527.3650","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents an electroanalytical approach to measure the catechol-O-methyltransferase (COMT) inhibitor tolcapone (TOL) using a boron-doped diamond (BDD) electrode. The application of cyclic voltammetry (CV) technique revealed that TOL exhibited a distinct, diffusion-controlled, irreversible anodic peak at a potential of approximately +0.71 V (vs. Ag/AgCl) in a 0.1 mol L<sup>-1</sup> phosphate buffer solution (PBS) with a pH of 2.5. The oxidation of TOL is highly dependent on the pH and supporting electrolytes. Based on the data obtained from the pH investigation, a proposed mechanism for the electro-oxidation of TOL is suggested. Using the square wave voltammetry (SWV) technique, a satisfactory linear relationship was observed at approximately +0.66 V in a 0.1 mol L<sup>-1</sup> PBS with a pH of 2.5. The presented method exhibited linearity within the concentration range between 1.0-50.0 μg mL<sup>-1</sup> (3.7 × 10<sup>-6</sup>-1.8 × 10<sup>-4</sup> mol L<sup>-1</sup>), with a limit of detection (LOD) of 0.29 μg mL<sup>-1</sup> (1.1 × 10<sup>-6</sup> mol L<sup>-1</sup>). The BDD electrode demonstrated good selectivity against inorganic ions and filler materials interference. Finally, the suitability of the developed approach was assessed by measuring TOL in tablet formulations, resulting in favorable recoveries ranging from 103.4% to 106.2%.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10965188/pdf/","citationCount":"0","resultStr":"{\"title\":\"Voltammetric measurement of catechol-O-methyltransferase inhibitor tolcapone in the pharmaceutical form on the boron-doped diamond electrode.\",\"authors\":\"Musa Kiran, Yavuz Yardim\",\"doi\":\"10.55730/1300-0527.3650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study presents an electroanalytical approach to measure the catechol-O-methyltransferase (COMT) inhibitor tolcapone (TOL) using a boron-doped diamond (BDD) electrode. The application of cyclic voltammetry (CV) technique revealed that TOL exhibited a distinct, diffusion-controlled, irreversible anodic peak at a potential of approximately +0.71 V (vs. Ag/AgCl) in a 0.1 mol L<sup>-1</sup> phosphate buffer solution (PBS) with a pH of 2.5. The oxidation of TOL is highly dependent on the pH and supporting electrolytes. Based on the data obtained from the pH investigation, a proposed mechanism for the electro-oxidation of TOL is suggested. Using the square wave voltammetry (SWV) technique, a satisfactory linear relationship was observed at approximately +0.66 V in a 0.1 mol L<sup>-1</sup> PBS with a pH of 2.5. The presented method exhibited linearity within the concentration range between 1.0-50.0 μg mL<sup>-1</sup> (3.7 × 10<sup>-6</sup>-1.8 × 10<sup>-4</sup> mol L<sup>-1</sup>), with a limit of detection (LOD) of 0.29 μg mL<sup>-1</sup> (1.1 × 10<sup>-6</sup> mol L<sup>-1</sup>). The BDD electrode demonstrated good selectivity against inorganic ions and filler materials interference. Finally, the suitability of the developed approach was assessed by measuring TOL in tablet formulations, resulting in favorable recoveries ranging from 103.4% to 106.2%.</p>\",\"PeriodicalId\":23367,\"journal\":{\"name\":\"Turkish Journal of Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10965188/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0527.3650\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.55730/1300-0527.3650","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种使用掺硼金刚石(BDD)电极测量儿茶酚-O-甲基转移酶(COMT)抑制剂妥卡酮(TOL)的电分析方法。循环伏安法(CV)技术的应用表明,在 pH 值为 2.5 的 0.1 mol L-1 磷酸盐缓冲溶液(PBS)中,TOL 在电位约为 +0.71 V(相对于 Ag/AgCl)处表现出明显的扩散控制型不可逆阳极峰。TOL 的氧化作用高度依赖于 pH 值和支持电解质。根据 pH 值研究获得的数据,提出了 TOL 电氧化的机理。使用方波伏安法(SWV)技术,在 pH 值为 2.5 的 0.1 mol L-1 PBS 中观察到了令人满意的线性关系,约为 +0.66 V。该方法在 1.0-50.0 μg mL-1 (3.7 × 10-6-1.8 × 10-4 mol L-1)浓度范围内呈线性关系,检出限(LOD)为 0.29 μg mL-1 (1.1 × 10-6 mol L-1)。BDD 电极对无机离子和填充材料的干扰具有良好的选择性。最后,通过测量片剂中的 TOL,评估了所开发方法的适用性,结果表明回收率在 103.4% 至 106.2% 之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Voltammetric measurement of catechol-O-methyltransferase inhibitor tolcapone in the pharmaceutical form on the boron-doped diamond electrode.

This study presents an electroanalytical approach to measure the catechol-O-methyltransferase (COMT) inhibitor tolcapone (TOL) using a boron-doped diamond (BDD) electrode. The application of cyclic voltammetry (CV) technique revealed that TOL exhibited a distinct, diffusion-controlled, irreversible anodic peak at a potential of approximately +0.71 V (vs. Ag/AgCl) in a 0.1 mol L-1 phosphate buffer solution (PBS) with a pH of 2.5. The oxidation of TOL is highly dependent on the pH and supporting electrolytes. Based on the data obtained from the pH investigation, a proposed mechanism for the electro-oxidation of TOL is suggested. Using the square wave voltammetry (SWV) technique, a satisfactory linear relationship was observed at approximately +0.66 V in a 0.1 mol L-1 PBS with a pH of 2.5. The presented method exhibited linearity within the concentration range between 1.0-50.0 μg mL-1 (3.7 × 10-6-1.8 × 10-4 mol L-1), with a limit of detection (LOD) of 0.29 μg mL-1 (1.1 × 10-6 mol L-1). The BDD electrode demonstrated good selectivity against inorganic ions and filler materials interference. Finally, the suitability of the developed approach was assessed by measuring TOL in tablet formulations, resulting in favorable recoveries ranging from 103.4% to 106.2%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Turkish Journal of Chemistry
Turkish Journal of Chemistry 化学-工程:化工
CiteScore
2.40
自引率
7.10%
发文量
87
审稿时长
3 months
期刊介绍: The Turkish Journal of Chemistry is a bimonthly multidisciplinary journal published by the Scientific and Technological Research Council of Turkey (TÜBİTAK). The journal is dedicated to dissemination of knowledge in all disciplines of chemistry (organic, inorganic, physical, polymeric, technical, theoretical and analytical chemistry) as well as research at the interface with other sciences especially in chemical engineering where molecular aspects are key to the findings. The journal accepts English-language original manuscripts and contribution is open to researchers of all nationalities. The journal publishes refereed original papers, reviews, letters to editor and issues devoted to special fields. All manuscripts are peer-reviewed and electronic processing ensures accurate reproduction of text and data, plus publication times as short as possible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信