经修订的强化敏感性理论的神经相关性:一项针对中年人的横断面结构神经影像学研究。

IF 2.9 2区 心理学 Q2 NEUROSCIENCES
Psychophysiology Pub Date : 2024-08-01 Epub Date: 2024-03-28 DOI:10.1111/psyp.14574
Daniela A Espinoza Oyarce, Richard A Burns, Marnie E Shaw, Peter Butterworth, Nicolas Cherbuin
{"title":"经修订的强化敏感性理论的神经相关性:一项针对中年人的横断面结构神经影像学研究。","authors":"Daniela A Espinoza Oyarce, Richard A Burns, Marnie E Shaw, Peter Butterworth, Nicolas Cherbuin","doi":"10.1111/psyp.14574","DOIUrl":null,"url":null,"abstract":"<p><p>The revised reinforcement sensitivity theory (RST) proposes that neurobiological systems control behavior: the fight-flight-freeze (FFFS) for avoidance of threat; behavioral approach/activation (BAS) for approach to rewards; and behavioral inhibition (BIS) for conflict resolution when avoidance and approach are possible. Neuroimaging studies have confirmed some theoretical associations between brain structures and the BAS and BIS; however, little representative population data are available for the FFFS. We investigated the neural correlates of the revised RST in a sample of 404 middle-aged adults (M<sub>age</sub> = 47.18 (SD = 1.38); 54.5% female). Participants underwent structural magnetic resonance imaging and completed health questionnaires and the BIS/BAS/FFFS scales. We used multiple regression analyses to investigate the association between scale scores and volumes of a priori theoretically linked regions of interest while controlling for sex, age, intracranial volume, and cardio-metabolic variables; and conducted exploratory analyses on cortical thickness. The BIS was negatively associated with hippocampus laterality. At standard significance levels, the fear component of the FFFS was positively associated with anterior cingulate cortex; the BAS was positively associated with bilateral caudate; and the BIS was positively associated with posterior cingulate cortex volume. Furthermore, these neurobiological systems showed distinct patterns of association with cortical thickness though future work is needed. Our results showed that the neurobiological systems of the revised RST characterized in rodents can also be identified in the human brain.</p>","PeriodicalId":20913,"journal":{"name":"Psychophysiology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural correlates of the revised reinforcement sensitivity theory: A cross-sectional structural neuroimaging study in middle-aged adults.\",\"authors\":\"Daniela A Espinoza Oyarce, Richard A Burns, Marnie E Shaw, Peter Butterworth, Nicolas Cherbuin\",\"doi\":\"10.1111/psyp.14574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The revised reinforcement sensitivity theory (RST) proposes that neurobiological systems control behavior: the fight-flight-freeze (FFFS) for avoidance of threat; behavioral approach/activation (BAS) for approach to rewards; and behavioral inhibition (BIS) for conflict resolution when avoidance and approach are possible. Neuroimaging studies have confirmed some theoretical associations between brain structures and the BAS and BIS; however, little representative population data are available for the FFFS. We investigated the neural correlates of the revised RST in a sample of 404 middle-aged adults (M<sub>age</sub> = 47.18 (SD = 1.38); 54.5% female). Participants underwent structural magnetic resonance imaging and completed health questionnaires and the BIS/BAS/FFFS scales. We used multiple regression analyses to investigate the association between scale scores and volumes of a priori theoretically linked regions of interest while controlling for sex, age, intracranial volume, and cardio-metabolic variables; and conducted exploratory analyses on cortical thickness. The BIS was negatively associated with hippocampus laterality. At standard significance levels, the fear component of the FFFS was positively associated with anterior cingulate cortex; the BAS was positively associated with bilateral caudate; and the BIS was positively associated with posterior cingulate cortex volume. Furthermore, these neurobiological systems showed distinct patterns of association with cortical thickness though future work is needed. Our results showed that the neurobiological systems of the revised RST characterized in rodents can also be identified in the human brain.</p>\",\"PeriodicalId\":20913,\"journal\":{\"name\":\"Psychophysiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychophysiology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1111/psyp.14574\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychophysiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/psyp.14574","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

经修订的强化敏感性理论(RST)提出了控制行为的神经生物学系统:"打-飞-冻"(FFFS)用于避免威胁;行为接近/激活(BAS)用于接近奖励;行为抑制(BIS)用于在可能避免和接近时解决冲突。神经影像学研究证实了大脑结构与 BAS 和 BIS 之间的一些理论联系;然而,关于 FFFS 的代表性人群数据却很少。我们调查了 404 名中年人(年龄 = 47.18 (SD = 1.38);54.5% 为女性)样本中修订后的 RST 的神经相关性。参与者接受了结构性磁共振成像检查,并填写了健康问卷和 BIS/BAS/FFFS 量表。在控制性别、年龄、颅内容积和心血管代谢变量的情况下,我们使用多元回归分析来研究量表得分与先验理论相关区域容积之间的关系,并对皮质厚度进行了探索性分析。BIS 与海马侧向呈负相关。在标准显著性水平下,FFFS 的恐惧成分与前扣带皮层呈正相关;BAS 与双侧尾状体呈正相关;BIS 与后扣带皮层体积呈正相关。此外,这些神经生物学系统与皮层厚度的关联模式也各不相同,但仍需进一步研究。我们的研究结果表明,在啮齿动物身上发现的经修订的 RST 神经生物学系统也可以在人脑中找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural correlates of the revised reinforcement sensitivity theory: A cross-sectional structural neuroimaging study in middle-aged adults.

The revised reinforcement sensitivity theory (RST) proposes that neurobiological systems control behavior: the fight-flight-freeze (FFFS) for avoidance of threat; behavioral approach/activation (BAS) for approach to rewards; and behavioral inhibition (BIS) for conflict resolution when avoidance and approach are possible. Neuroimaging studies have confirmed some theoretical associations between brain structures and the BAS and BIS; however, little representative population data are available for the FFFS. We investigated the neural correlates of the revised RST in a sample of 404 middle-aged adults (Mage = 47.18 (SD = 1.38); 54.5% female). Participants underwent structural magnetic resonance imaging and completed health questionnaires and the BIS/BAS/FFFS scales. We used multiple regression analyses to investigate the association between scale scores and volumes of a priori theoretically linked regions of interest while controlling for sex, age, intracranial volume, and cardio-metabolic variables; and conducted exploratory analyses on cortical thickness. The BIS was negatively associated with hippocampus laterality. At standard significance levels, the fear component of the FFFS was positively associated with anterior cingulate cortex; the BAS was positively associated with bilateral caudate; and the BIS was positively associated with posterior cingulate cortex volume. Furthermore, these neurobiological systems showed distinct patterns of association with cortical thickness though future work is needed. Our results showed that the neurobiological systems of the revised RST characterized in rodents can also be identified in the human brain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Psychophysiology
Psychophysiology 医学-神经科学
CiteScore
6.80
自引率
8.10%
发文量
225
审稿时长
2 months
期刊介绍: Founded in 1964, Psychophysiology is the most established journal in the world specifically dedicated to the dissemination of psychophysiological science. The journal continues to play a key role in advancing human neuroscience in its many forms and methodologies (including central and peripheral measures), covering research on the interrelationships between the physiological and psychological aspects of brain and behavior. Typically, studies published in Psychophysiology include psychological independent variables and noninvasive physiological dependent variables (hemodynamic, optical, and electromagnetic brain imaging and/or peripheral measures such as respiratory sinus arrhythmia, electromyography, pupillography, and many others). The majority of studies published in the journal involve human participants, but work using animal models of such phenomena is occasionally published. Psychophysiology welcomes submissions on new theoretical, empirical, and methodological advances in: cognitive, affective, clinical and social neuroscience, psychopathology and psychiatry, health science and behavioral medicine, and biomedical engineering. The journal publishes theoretical papers, evaluative reviews of literature, empirical papers, and methodological papers, with submissions welcome from scientists in any fields mentioned above.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信