体外灌注小鼠肾上腺--研究醛固酮分泌的新模型。

IF 2.9 4区 医学 Q2 PHYSIOLOGY
Allein Plain, Laura Knödl, Ines Tegtmeier, Sascha Bandulik, Richard Warth
{"title":"体外灌注小鼠肾上腺--研究醛固酮分泌的新模型。","authors":"Allein Plain, Laura Knödl, Ines Tegtmeier, Sascha Bandulik, Richard Warth","doi":"10.1007/s00424-024-02950-z","DOIUrl":null,"url":null,"abstract":"<p><p>Aldosterone is a steroid hormone that is important for maintaining the volume and ionic composition of extracellular fluids and is produced in the zona glomerulosa of the adrenal cortex. The basic mechanisms controlling aldosterone secretion are known. However, more detailed studies on the regulation of aldosterone secretion often fail due to the lack of suitable models: although secretion can be studied in cultured adrenocortical cells under defined conditions, the differentiation status of the cells is difficult to control and the complex anatomy of the adrenal cortex is lost. In living animals, the physiological context is intact, but the influences are manifold and the examination conditions cannot be sufficiently controlled. One method that closes the gap between cell models and studies in living animals is the isolated perfused adrenal gland. In the past, this method has provided important data on the pathophysiology of adrenal glands from larger animals, but the technique was not used in mice. Here, we developed a method for isolation and perfusion of the mouse adrenal gland to study aldosterone secretion. This technique preserves the complex anatomical and functional context of the mouse adrenal cortex, to ensure defined experimental conditions and to minimize extra-adrenal influences. Initial series of experiments with the ex vivo perfused mouse adrenal gland show that this model offers the possibility for unique insights into pathophysiological regulatory principles and is suitable for the use of genetically modified mouse models.</p>","PeriodicalId":19954,"journal":{"name":"Pflugers Archiv : European journal of physiology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11139715/pdf/","citationCount":"0","resultStr":"{\"title\":\"The ex vivo perfused mouse adrenal gland-a new model to study aldosterone secretion.\",\"authors\":\"Allein Plain, Laura Knödl, Ines Tegtmeier, Sascha Bandulik, Richard Warth\",\"doi\":\"10.1007/s00424-024-02950-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aldosterone is a steroid hormone that is important for maintaining the volume and ionic composition of extracellular fluids and is produced in the zona glomerulosa of the adrenal cortex. The basic mechanisms controlling aldosterone secretion are known. However, more detailed studies on the regulation of aldosterone secretion often fail due to the lack of suitable models: although secretion can be studied in cultured adrenocortical cells under defined conditions, the differentiation status of the cells is difficult to control and the complex anatomy of the adrenal cortex is lost. In living animals, the physiological context is intact, but the influences are manifold and the examination conditions cannot be sufficiently controlled. One method that closes the gap between cell models and studies in living animals is the isolated perfused adrenal gland. In the past, this method has provided important data on the pathophysiology of adrenal glands from larger animals, but the technique was not used in mice. Here, we developed a method for isolation and perfusion of the mouse adrenal gland to study aldosterone secretion. This technique preserves the complex anatomical and functional context of the mouse adrenal cortex, to ensure defined experimental conditions and to minimize extra-adrenal influences. Initial series of experiments with the ex vivo perfused mouse adrenal gland show that this model offers the possibility for unique insights into pathophysiological regulatory principles and is suitable for the use of genetically modified mouse models.</p>\",\"PeriodicalId\":19954,\"journal\":{\"name\":\"Pflugers Archiv : European journal of physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11139715/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pflugers Archiv : European journal of physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00424-024-02950-z\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pflugers Archiv : European journal of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00424-024-02950-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

醛固酮是一种类固醇激素,对维持细胞外液的容量和离子成分非常重要,由肾上腺皮质的肾小球区分泌。控制醛固酮分泌的基本机制是已知的。然而,由于缺乏合适的模型,对醛固酮分泌调控的更详细研究往往以失败告终:虽然可以在确定的条件下对培养的肾上腺皮质细胞的分泌进行研究,但细胞的分化状态难以控制,而且失去了肾上腺皮质的复杂解剖结构。在活体动物中,生理环境是完整的,但影响因素是多方面的,检查条件也无法充分控制。隔离灌注肾上腺是缩小细胞模型与活体动物研究之间差距的一种方法。过去,这种方法为研究大型动物肾上腺的病理生理学提供了重要数据,但该技术并未用于小鼠。在这里,我们开发了一种分离和灌注小鼠肾上腺以研究醛固酮分泌的方法。该技术保留了小鼠肾上腺皮质复杂的解剖和功能背景,确保了明确的实验条件,并将肾上腺外的影响降至最低。利用体外灌注小鼠肾上腺进行的一系列初步实验表明,这种模型有可能提供对病理生理调节原理的独特见解,而且适合使用转基因小鼠模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The ex vivo perfused mouse adrenal gland-a new model to study aldosterone secretion.

The ex vivo perfused mouse adrenal gland-a new model to study aldosterone secretion.

Aldosterone is a steroid hormone that is important for maintaining the volume and ionic composition of extracellular fluids and is produced in the zona glomerulosa of the adrenal cortex. The basic mechanisms controlling aldosterone secretion are known. However, more detailed studies on the regulation of aldosterone secretion often fail due to the lack of suitable models: although secretion can be studied in cultured adrenocortical cells under defined conditions, the differentiation status of the cells is difficult to control and the complex anatomy of the adrenal cortex is lost. In living animals, the physiological context is intact, but the influences are manifold and the examination conditions cannot be sufficiently controlled. One method that closes the gap between cell models and studies in living animals is the isolated perfused adrenal gland. In the past, this method has provided important data on the pathophysiology of adrenal glands from larger animals, but the technique was not used in mice. Here, we developed a method for isolation and perfusion of the mouse adrenal gland to study aldosterone secretion. This technique preserves the complex anatomical and functional context of the mouse adrenal cortex, to ensure defined experimental conditions and to minimize extra-adrenal influences. Initial series of experiments with the ex vivo perfused mouse adrenal gland show that this model offers the possibility for unique insights into pathophysiological regulatory principles and is suitable for the use of genetically modified mouse models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.80
自引率
2.20%
发文量
121
审稿时长
4-8 weeks
期刊介绍: Pflügers Archiv European Journal of Physiology publishes those results of original research that are seen as advancing the physiological sciences, especially those providing mechanistic insights into physiological functions at the molecular and cellular level, and clearly conveying a physiological message. Submissions are encouraged that deal with the evaluation of molecular and cellular mechanisms of disease, ideally resulting in translational research. Purely descriptive papers covering applied physiology or clinical papers will be excluded. Papers on methodological topics will be considered if they contribute to the development of novel tools for further investigation of (patho)physiological mechanisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信