白色念珠菌中的不透明白色切换:细胞生物学、调节和功能。

IF 8 1区 生物学 Q1 MICROBIOLOGY
Microbiology and Molecular Biology Reviews Pub Date : 2024-06-27 Epub Date: 2024-03-28 DOI:10.1128/mmbr.00043-22
David R Soll
{"title":"白色念珠菌中的不透明白色切换:细胞生物学、调节和功能。","authors":"David R Soll","doi":"10.1128/mmbr.00043-22","DOIUrl":null,"url":null,"abstract":"<p><p>SUMMARY<i>Candida albicans</i> remains a major fungal pathogen colonizing humans and opportunistically invading tissue when conditions are predisposing. Part of the success of <i>C. albicans</i> was attributed to its capacity to form hyphae that facilitate tissue invasion. However, in 1987, a second developmental program was discovered, the \"white-opaque transition,\" a high-frequency reversible switching system that impacted most aspects of the physiology, cell architecture, virulence, and gene expression of <i>C. albicans</i>. For the 15 years following the discovery of white-opaque switching, its role in the biology of <i>C. albicans</i> remained elusive. Then in 2002, it was discovered that in order to mate, <i>C. albicans</i> had to switch from white to opaque, a unique step in a yeast mating program. In 2006, three laboratories simultaneously identified a putative master switch gene, which led to a major quest to elucidate the underlying mechanisms that regulate white-opaque switching. Here, the evolving discoveries related to this complicated phenotypic transition are reviewed in a quasi-chronological order not only to provide a historical perspective but also to highlight several unique characteristics of white-opaque switching, which are fascinating and may be important to the life history and virulence of this persistent pathogen. Many of these characteristics have not been fully investigated, in many cases, leaving intriguing questions unresolved. Some of these include the function of unique channeled pimples on the opaque cell wall, the capacity to form opaque cells in the absence of the master switch gene <i>WOR1</i>, the formation of separate \"pathogenic\" and \"sexual\" biofilms, and the possibility that a significant portion of natural strains colonizing the lower gastrointestinal tract may be in the opaque phase. This review addresses many of these characteristics with the intent of engendering interest in resolving questions that remain unanswered.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0004322"},"PeriodicalIF":8.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11332339/pdf/","citationCount":"0","resultStr":"{\"title\":\"White-opaque switching in <i>Candida albicans</i>: cell biology, regulation, and function.\",\"authors\":\"David R Soll\",\"doi\":\"10.1128/mmbr.00043-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>SUMMARY<i>Candida albicans</i> remains a major fungal pathogen colonizing humans and opportunistically invading tissue when conditions are predisposing. Part of the success of <i>C. albicans</i> was attributed to its capacity to form hyphae that facilitate tissue invasion. However, in 1987, a second developmental program was discovered, the \\\"white-opaque transition,\\\" a high-frequency reversible switching system that impacted most aspects of the physiology, cell architecture, virulence, and gene expression of <i>C. albicans</i>. For the 15 years following the discovery of white-opaque switching, its role in the biology of <i>C. albicans</i> remained elusive. Then in 2002, it was discovered that in order to mate, <i>C. albicans</i> had to switch from white to opaque, a unique step in a yeast mating program. In 2006, three laboratories simultaneously identified a putative master switch gene, which led to a major quest to elucidate the underlying mechanisms that regulate white-opaque switching. Here, the evolving discoveries related to this complicated phenotypic transition are reviewed in a quasi-chronological order not only to provide a historical perspective but also to highlight several unique characteristics of white-opaque switching, which are fascinating and may be important to the life history and virulence of this persistent pathogen. Many of these characteristics have not been fully investigated, in many cases, leaving intriguing questions unresolved. Some of these include the function of unique channeled pimples on the opaque cell wall, the capacity to form opaque cells in the absence of the master switch gene <i>WOR1</i>, the formation of separate \\\"pathogenic\\\" and \\\"sexual\\\" biofilms, and the possibility that a significant portion of natural strains colonizing the lower gastrointestinal tract may be in the opaque phase. This review addresses many of these characteristics with the intent of engendering interest in resolving questions that remain unanswered.</p>\",\"PeriodicalId\":18520,\"journal\":{\"name\":\"Microbiology and Molecular Biology Reviews\",\"volume\":\" \",\"pages\":\"e0004322\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11332339/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology and Molecular Biology Reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/mmbr.00043-22\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology and Molecular Biology Reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mmbr.00043-22","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要白念珠菌仍然是一种主要的真菌病原体,它在人类中定植,并在条件适宜时伺机侵入组织。白念珠菌的成功部分归功于其形成菌丝的能力,这种能力有利于组织入侵。然而,1987 年,人们发现了白僵菌的第二个发育程序,即 "白色-不透明转变",这是一种高频可逆转换系统,对白僵菌的生理、细胞结构、毒力和基因表达等大多数方面都有影响。在发现白色不透明转换后的 15 年中,它在白僵菌生物学中的作用一直难以捉摸。2002 年,人们发现白僵菌为了交配,必须从白色转为不透明,这是酵母交配程序中的一个独特步骤。2006 年,三个实验室同时发现了一个推测的主控切换基因,从而引发了对调控白色-不透明切换的内在机制的重大探索。本文按准时间顺序回顾了与这一复杂表型转换有关的不断发展的发现,不仅提供了一个历史视角,还强调了白不透明切换的几个独特特征,这些特征令人着迷,可能对这一顽固病原体的生活史和毒力非常重要。在许多情况下,这些特征中的许多特征尚未得到充分研究,从而导致一些有趣的问题悬而未决。其中一些问题包括不透明细胞壁上独特的沟状丘疹的功能、在缺乏主开关基因 WOR1 的情况下形成不透明细胞的能力、形成独立的 "致病性 "和 "有性 "生物膜,以及在下消化道定植的天然菌株中很大一部分可能处于不透明阶段。本综述探讨了其中的许多特征,旨在引起人们对解决仍未解答的问题的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
White-opaque switching in Candida albicans: cell biology, regulation, and function.

SUMMARYCandida albicans remains a major fungal pathogen colonizing humans and opportunistically invading tissue when conditions are predisposing. Part of the success of C. albicans was attributed to its capacity to form hyphae that facilitate tissue invasion. However, in 1987, a second developmental program was discovered, the "white-opaque transition," a high-frequency reversible switching system that impacted most aspects of the physiology, cell architecture, virulence, and gene expression of C. albicans. For the 15 years following the discovery of white-opaque switching, its role in the biology of C. albicans remained elusive. Then in 2002, it was discovered that in order to mate, C. albicans had to switch from white to opaque, a unique step in a yeast mating program. In 2006, three laboratories simultaneously identified a putative master switch gene, which led to a major quest to elucidate the underlying mechanisms that regulate white-opaque switching. Here, the evolving discoveries related to this complicated phenotypic transition are reviewed in a quasi-chronological order not only to provide a historical perspective but also to highlight several unique characteristics of white-opaque switching, which are fascinating and may be important to the life history and virulence of this persistent pathogen. Many of these characteristics have not been fully investigated, in many cases, leaving intriguing questions unresolved. Some of these include the function of unique channeled pimples on the opaque cell wall, the capacity to form opaque cells in the absence of the master switch gene WOR1, the formation of separate "pathogenic" and "sexual" biofilms, and the possibility that a significant portion of natural strains colonizing the lower gastrointestinal tract may be in the opaque phase. This review addresses many of these characteristics with the intent of engendering interest in resolving questions that remain unanswered.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
18.80
自引率
0.80%
发文量
27
期刊介绍: Microbiology and Molecular Biology Reviews (MMBR), a journal that explores the significance and interrelationships of recent discoveries in various microbiology fields, publishes review articles that help both specialists and nonspecialists understand and apply the latest findings in their own research. MMBR covers a wide range of topics in microbiology, including microbial ecology, evolution, parasitology, biotechnology, and immunology. The journal caters to scientists with diverse interests in all areas of microbial science and encompasses viruses, bacteria, archaea, fungi, unicellular eukaryotes, and microbial parasites. MMBR primarily publishes authoritative and critical reviews that push the boundaries of knowledge, appealing to both specialists and generalists. The journal often includes descriptive figures and tables to enhance understanding. Indexed/Abstracted in various databases such as Agricola, BIOSIS Previews, CAB Abstracts, Cambridge Scientific Abstracts, Chemical Abstracts Service, Current Contents- Life Sciences, EMBASE, Food Science and Technology Abstracts, Illustrata, MEDLINE, Science Citation Index Expanded (Web of Science), Summon, and Scopus, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信