热超材料的机器学习辅助设计与优化。

IF 55.8 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Changliang Zhu, Emmanuel Anuoluwa Bamidele, Xiangying Shen*, Guimei Zhu* and Baowen Li*, 
{"title":"热超材料的机器学习辅助设计与优化。","authors":"Changliang Zhu,&nbsp;Emmanuel Anuoluwa Bamidele,&nbsp;Xiangying Shen*,&nbsp;Guimei Zhu* and Baowen Li*,&nbsp;","doi":"10.1021/acs.chemrev.3c00708","DOIUrl":null,"url":null,"abstract":"<p >Artificial Intelligence (AI) has advanced material research that were previously intractable, for example, the machine learning (ML) has been able to predict some unprecedented thermal properties. In this review, we first elucidate the methodologies underpinning discriminative and generative models, as well as the paradigm of optimization approaches. Then, we present a series of case studies showcasing the application of machine learning in thermal metamaterial design. Finally, we give a brief discussion on the challenges and opportunities in this fast developing field. In particular, this review provides: (1) Optimization of thermal metamaterials using optimization algorithms to achieve specific target properties. (2) Integration of discriminative models with optimization algorithms to enhance computational efficiency. (3) Generative models for the structural design and optimization of thermal metamaterials.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"124 7","pages":"4258–4331"},"PeriodicalIF":55.8000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.chemrev.3c00708","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Aided Design and Optimization of Thermal Metamaterials\",\"authors\":\"Changliang Zhu,&nbsp;Emmanuel Anuoluwa Bamidele,&nbsp;Xiangying Shen*,&nbsp;Guimei Zhu* and Baowen Li*,&nbsp;\",\"doi\":\"10.1021/acs.chemrev.3c00708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Artificial Intelligence (AI) has advanced material research that were previously intractable, for example, the machine learning (ML) has been able to predict some unprecedented thermal properties. In this review, we first elucidate the methodologies underpinning discriminative and generative models, as well as the paradigm of optimization approaches. Then, we present a series of case studies showcasing the application of machine learning in thermal metamaterial design. Finally, we give a brief discussion on the challenges and opportunities in this fast developing field. In particular, this review provides: (1) Optimization of thermal metamaterials using optimization algorithms to achieve specific target properties. (2) Integration of discriminative models with optimization algorithms to enhance computational efficiency. (3) Generative models for the structural design and optimization of thermal metamaterials.</p>\",\"PeriodicalId\":32,\"journal\":{\"name\":\"Chemical Reviews\",\"volume\":\"124 7\",\"pages\":\"4258–4331\"},\"PeriodicalIF\":55.8000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.chemrev.3c00708\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.chemrev.3c00708\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Reviews","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemrev.3c00708","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)推动了以前难以解决的材料研究,例如,机器学习(ML)能够预测一些前所未有的热特性。在这篇综述中,我们首先阐明了判别模型和生成模型的基本方法,以及优化方法的范例。然后,我们介绍一系列案例研究,展示机器学习在热超材料设计中的应用。最后,我们简要讨论了这一快速发展领域所面临的挑战和机遇。本综述特别介绍了:(1)使用优化算法优化热超材料,以实现特定的目标特性。(2) 将判别模型与优化算法相结合,提高计算效率。(3) 热超材料结构设计和优化的生成模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine Learning Aided Design and Optimization of Thermal Metamaterials

Machine Learning Aided Design and Optimization of Thermal Metamaterials

Machine Learning Aided Design and Optimization of Thermal Metamaterials

Artificial Intelligence (AI) has advanced material research that were previously intractable, for example, the machine learning (ML) has been able to predict some unprecedented thermal properties. In this review, we first elucidate the methodologies underpinning discriminative and generative models, as well as the paradigm of optimization approaches. Then, we present a series of case studies showcasing the application of machine learning in thermal metamaterial design. Finally, we give a brief discussion on the challenges and opportunities in this fast developing field. In particular, this review provides: (1) Optimization of thermal metamaterials using optimization algorithms to achieve specific target properties. (2) Integration of discriminative models with optimization algorithms to enhance computational efficiency. (3) Generative models for the structural design and optimization of thermal metamaterials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Reviews
Chemical Reviews 化学-化学综合
CiteScore
106.00
自引率
1.10%
发文量
278
审稿时长
4.3 months
期刊介绍: Chemical Reviews is a highly regarded and highest-ranked journal covering the general topic of chemistry. Its mission is to provide comprehensive, authoritative, critical, and readable reviews of important recent research in organic, inorganic, physical, analytical, theoretical, and biological chemistry. Since 1985, Chemical Reviews has also published periodic thematic issues that focus on a single theme or direction of emerging research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信