{"title":"基于物种目标局部敏感性分析的化学动力学模型还原","authors":"You Wu, Shengqiang Lin, Chung K. Law, Bin Yang","doi":"10.1002/kin.21721","DOIUrl":null,"url":null,"abstract":"<p>Reduction of large combustion mechanisms is usually conducted based on the detection and elimination of redundant species and reactions. Reaction elimination methods are mostly based on sensitivity analysis, which can provide insight into the kinetic system, while species elimination methods are more efficient. In this work, the species-targeted local sensitivity analysis (STLSA) method is proposed to evaluate the importance of species and eliminate non-crucial species and their related reactions to simplify kinetic models. This paper comprehensively evaluates the effectiveness of STLSA across various combustion scenarios, including high and low-temperature ignition and laminar flame speed, using diverse mechanisms like USC Mech II, JetSurf 1.0, POLIMI_TOT_1412, NUIGMech1.1 and so on. Comparisons with graph-based methods, such as DRG and DRGEP, highlight STLSA's superior efficiency and accuracy. Moreover, STLSA is compared to species-targeted global sensitivity analysis (STGSA), demonstrating significant computation cost savings and comparable model reduction capabilities. The study concludes that STLSA is a robust and versatile tool for mechanism reduction, offering substantial improvements in computational efficiency while maintaining high accuracy in predicting key combustion properties.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical kinetic model reduction based on species-targeted local sensitivity analysis\",\"authors\":\"You Wu, Shengqiang Lin, Chung K. Law, Bin Yang\",\"doi\":\"10.1002/kin.21721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Reduction of large combustion mechanisms is usually conducted based on the detection and elimination of redundant species and reactions. Reaction elimination methods are mostly based on sensitivity analysis, which can provide insight into the kinetic system, while species elimination methods are more efficient. In this work, the species-targeted local sensitivity analysis (STLSA) method is proposed to evaluate the importance of species and eliminate non-crucial species and their related reactions to simplify kinetic models. This paper comprehensively evaluates the effectiveness of STLSA across various combustion scenarios, including high and low-temperature ignition and laminar flame speed, using diverse mechanisms like USC Mech II, JetSurf 1.0, POLIMI_TOT_1412, NUIGMech1.1 and so on. Comparisons with graph-based methods, such as DRG and DRGEP, highlight STLSA's superior efficiency and accuracy. Moreover, STLSA is compared to species-targeted global sensitivity analysis (STGSA), demonstrating significant computation cost savings and comparable model reduction capabilities. The study concludes that STLSA is a robust and versatile tool for mechanism reduction, offering substantial improvements in computational efficiency while maintaining high accuracy in predicting key combustion properties.</p>\",\"PeriodicalId\":13894,\"journal\":{\"name\":\"International Journal of Chemical Kinetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Kinetics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/kin.21721\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Kinetics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/kin.21721","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Chemical kinetic model reduction based on species-targeted local sensitivity analysis
Reduction of large combustion mechanisms is usually conducted based on the detection and elimination of redundant species and reactions. Reaction elimination methods are mostly based on sensitivity analysis, which can provide insight into the kinetic system, while species elimination methods are more efficient. In this work, the species-targeted local sensitivity analysis (STLSA) method is proposed to evaluate the importance of species and eliminate non-crucial species and their related reactions to simplify kinetic models. This paper comprehensively evaluates the effectiveness of STLSA across various combustion scenarios, including high and low-temperature ignition and laminar flame speed, using diverse mechanisms like USC Mech II, JetSurf 1.0, POLIMI_TOT_1412, NUIGMech1.1 and so on. Comparisons with graph-based methods, such as DRG and DRGEP, highlight STLSA's superior efficiency and accuracy. Moreover, STLSA is compared to species-targeted global sensitivity analysis (STGSA), demonstrating significant computation cost savings and comparable model reduction capabilities. The study concludes that STLSA is a robust and versatile tool for mechanism reduction, offering substantial improvements in computational efficiency while maintaining high accuracy in predicting key combustion properties.
期刊介绍:
As the leading archival journal devoted exclusively to chemical kinetics, the International Journal of Chemical Kinetics publishes original research in gas phase, condensed phase, and polymer reaction kinetics, as well as biochemical and surface kinetics. The Journal seeks to be the primary archive for careful experimental measurements of reaction kinetics, in both simple and complex systems. The Journal also presents new developments in applied theoretical kinetics and publishes large kinetic models, and the algorithms and estimates used in these models. These include methods for handling the large reaction networks important in biochemistry, catalysis, and free radical chemistry. In addition, the Journal explores such topics as the quantitative relationships between molecular structure and chemical reactivity, organic/inorganic chemistry and reaction mechanisms, and the reactive chemistry at interfaces.