论 Musielak-Orlicz 空间中的一类双非线性演化方程

Pub Date : 2024-03-26 DOI:10.1002/mana.202300374
Goro Akagi, Giulio Schimperna
{"title":"论 Musielak-Orlicz 空间中的一类双非线性演化方程","authors":"Goro Akagi,&nbsp;Giulio Schimperna","doi":"10.1002/mana.202300374","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with a parabolic evolution equation of the form <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>u</mi>\n <mi>t</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>+</mo>\n <mi>B</mi>\n <mrow>\n <mo>(</mo>\n <mi>u</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mi>f</mi>\n </mrow>\n <annotation>$A(u_t) + B(u) = f$</annotation>\n </semantics></math>, settled in a smooth bounded domain of <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>d</mi>\n </msup>\n <annotation>$\\mathbb {R}^d$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>≥</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$d\\ge 1$</annotation>\n </semantics></math>, and complemented with the initial conditions and with (for simplicity) homogeneous Dirichlet boundary conditions. Here, <span></span><math>\n <semantics>\n <mrow>\n <mo>−</mo>\n <mi>B</mi>\n </mrow>\n <annotation>$-B$</annotation>\n </semantics></math> stands for a diffusion operator, possibly nonlinear, which may range in a very wide class, including the Laplacian, the <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math>-Laplacian for suitable <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$m\\in (1,\\infty)$</annotation>\n </semantics></math>, the “variable-exponent” <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$m(x)$</annotation>\n </semantics></math>-Laplacian, or even some fractional order operators. The operator <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> is assumed to be in the form <span></span><math>\n <semantics>\n <mrow>\n <mo>[</mo>\n <mi>A</mi>\n <mo>(</mo>\n <mi>v</mi>\n <mo>)</mo>\n <mo>]</mo>\n <mo>(</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>t</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mi>α</mi>\n <mo>(</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>v</mi>\n <mo>(</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>t</mi>\n <mo>)</mo>\n <mo>)</mo>\n </mrow>\n <annotation>$[A(v)](x,t)=\\alpha (x,v(x,t))$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mi>α</mi>\n <annotation>$\\alpha$</annotation>\n </semantics></math> being measurable in <span></span><math>\n <semantics>\n <mi>x</mi>\n <annotation>$x$</annotation>\n </semantics></math> and maximal monotone in <span></span><math>\n <semantics>\n <mi>v</mi>\n <annotation>$v$</annotation>\n </semantics></math>. The main results are devoted to proving existence of weak solutions for a wide class of functions <span></span><math>\n <semantics>\n <mi>α</mi>\n <annotation>$\\alpha$</annotation>\n </semantics></math> that extends the setting considered in previous results related to the variable exponent case where <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>v</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <msup>\n <mrow>\n <mo>|</mo>\n <mi>v</mi>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mo>|</mo>\n </mrow>\n <mrow>\n <mi>p</mi>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n <mi>v</mi>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\alpha (x,v)=|v(x)|^{p(x)-2}v(x)$</annotation>\n </semantics></math>. To this end, a theory of subdifferential operators will be established in Musielak–Orlicz spaces satisfying structure conditions of the so-called <span></span><math>\n <semantics>\n <msub>\n <mi>Δ</mi>\n <mn>2</mn>\n </msub>\n <annotation>$\\Delta _2$</annotation>\n </semantics></math>-type, and a framework for approximating maximal monotone operators acting in that class of spaces will also be developed. Such a theory is then applied to provide an existence result for a specific equation, but it may have an independent interest in itself. Finally, the existence result is illustrated by presenting a number of specific equations (and, correspondingly, of operators <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math>) to which the result can be applied.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a class of doubly nonlinear evolution equations in Musielak–Orlicz spaces\",\"authors\":\"Goro Akagi,&nbsp;Giulio Schimperna\",\"doi\":\"10.1002/mana.202300374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is concerned with a parabolic evolution equation of the form <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>A</mi>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>u</mi>\\n <mi>t</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mo>+</mo>\\n <mi>B</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>u</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mi>f</mi>\\n </mrow>\\n <annotation>$A(u_t) + B(u) = f$</annotation>\\n </semantics></math>, settled in a smooth bounded domain of <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mi>d</mi>\\n </msup>\\n <annotation>$\\\\mathbb {R}^d$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>≥</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$d\\\\ge 1$</annotation>\\n </semantics></math>, and complemented with the initial conditions and with (for simplicity) homogeneous Dirichlet boundary conditions. Here, <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>−</mo>\\n <mi>B</mi>\\n </mrow>\\n <annotation>$-B$</annotation>\\n </semantics></math> stands for a diffusion operator, possibly nonlinear, which may range in a very wide class, including the Laplacian, the <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$m$</annotation>\\n </semantics></math>-Laplacian for suitable <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n <mo>∈</mo>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>∞</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$m\\\\in (1,\\\\infty)$</annotation>\\n </semantics></math>, the “variable-exponent” <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$m(x)$</annotation>\\n </semantics></math>-Laplacian, or even some fractional order operators. The operator <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math> is assumed to be in the form <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>[</mo>\\n <mi>A</mi>\\n <mo>(</mo>\\n <mi>v</mi>\\n <mo>)</mo>\\n <mo>]</mo>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>,</mo>\\n <mi>t</mi>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mi>α</mi>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>,</mo>\\n <mi>v</mi>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>,</mo>\\n <mi>t</mi>\\n <mo>)</mo>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$[A(v)](x,t)=\\\\alpha (x,v(x,t))$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mi>α</mi>\\n <annotation>$\\\\alpha$</annotation>\\n </semantics></math> being measurable in <span></span><math>\\n <semantics>\\n <mi>x</mi>\\n <annotation>$x$</annotation>\\n </semantics></math> and maximal monotone in <span></span><math>\\n <semantics>\\n <mi>v</mi>\\n <annotation>$v$</annotation>\\n </semantics></math>. The main results are devoted to proving existence of weak solutions for a wide class of functions <span></span><math>\\n <semantics>\\n <mi>α</mi>\\n <annotation>$\\\\alpha$</annotation>\\n </semantics></math> that extends the setting considered in previous results related to the variable exponent case where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>α</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>,</mo>\\n <mi>v</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <msup>\\n <mrow>\\n <mo>|</mo>\\n <mi>v</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>|</mo>\\n </mrow>\\n <mrow>\\n <mi>p</mi>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n <mi>v</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\alpha (x,v)=|v(x)|^{p(x)-2}v(x)$</annotation>\\n </semantics></math>. To this end, a theory of subdifferential operators will be established in Musielak–Orlicz spaces satisfying structure conditions of the so-called <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Δ</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$\\\\Delta _2$</annotation>\\n </semantics></math>-type, and a framework for approximating maximal monotone operators acting in that class of spaces will also be developed. Such a theory is then applied to provide an existence result for a specific equation, but it may have an independent interest in itself. Finally, the existence result is illustrated by presenting a number of specific equations (and, correspondingly, of operators <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mi>B</mi>\\n <annotation>$B$</annotation>\\n </semantics></math>) to which the result can be applied.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文涉及一个抛物线演化方程,其形式为 A(ut)+B(u)=f$A(u_t) + B(u) = f$,在 Rd$\mathbb {R}^d$ 的光滑有界域中求解,d≥1$d\ge 1$,并辅以初始条件和(为简单起见)同相 Dirichlet 边界条件。这里,-B$-B$ 代表扩散算子,可能是非线性的,其范围很广,包括拉普拉茨算子、适合 m∈(1,∞)$m\in (1,\infty)$ 的 m$m$-Laplacian 算子、"可变分量 "m(x)$m(x)$-Laplacian 算子,甚至一些分数阶算子。假定算子 A$A$ 的形式为 [A(v)](x,t)=α(x,v(x,t))$[A(v)](x,t)=\alpha (x,v(x,t))$ α$\alpha$在 x$x$ 中是可测的,在 v$v$ 中是最大单调的。主要结果致力于证明一大类函数 α$\alpha$ 的弱解的存在性,扩展了之前与变指数情况相关的结果所考虑的环境,即 α(x,v)=|v(x)|p(x)-2v(x)$\alpha (x,v)=|v(x)|^{p(x)-2}v(x)$ 。为此,我们将在满足所谓 Δ2$\Delta _2$型结构条件的穆西拉克-奥利兹空间中建立亚微分算子理论,并建立一个近似作用于该类空间的最大单调算子的框架。然后,应用这种理论为特定方程提供一个存在性结果,但它本身可能具有独立的意义。最后,我们将提出一些具体方程(以及相应的算子 A$A$、B$B$)来说明存在性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On a class of doubly nonlinear evolution equations in Musielak–Orlicz spaces

This paper is concerned with a parabolic evolution equation of the form A ( u t ) + B ( u ) = f $A(u_t) + B(u) = f$ , settled in a smooth bounded domain of R d $\mathbb {R}^d$ , d 1 $d\ge 1$ , and complemented with the initial conditions and with (for simplicity) homogeneous Dirichlet boundary conditions. Here, B $-B$ stands for a diffusion operator, possibly nonlinear, which may range in a very wide class, including the Laplacian, the m $m$ -Laplacian for suitable m ( 1 , ) $m\in (1,\infty)$ , the “variable-exponent” m ( x ) $m(x)$ -Laplacian, or even some fractional order operators. The operator A $A$ is assumed to be in the form [ A ( v ) ] ( x , t ) = α ( x , v ( x , t ) ) $[A(v)](x,t)=\alpha (x,v(x,t))$ with α $\alpha$ being measurable in x $x$ and maximal monotone in v $v$ . The main results are devoted to proving existence of weak solutions for a wide class of functions α $\alpha$ that extends the setting considered in previous results related to the variable exponent case where α ( x , v ) = | v ( x ) | p ( x ) 2 v ( x ) $\alpha (x,v)=|v(x)|^{p(x)-2}v(x)$ . To this end, a theory of subdifferential operators will be established in Musielak–Orlicz spaces satisfying structure conditions of the so-called Δ 2 $\Delta _2$ -type, and a framework for approximating maximal monotone operators acting in that class of spaces will also be developed. Such a theory is then applied to provide an existence result for a specific equation, but it may have an independent interest in itself. Finally, the existence result is illustrated by presenting a number of specific equations (and, correspondingly, of operators A $A$ , B $B$ ) to which the result can be applied.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信