{"title":"聚乙烯亚胺浸渍树脂选择性吸附沼气中二氧化碳的突破性分析","authors":"Haiyan Yang, Yue Gong, Xinzhong Wang, Yuanyuan Chen, Dajiang Yu","doi":"10.1007/s00396-024-05234-1","DOIUrl":null,"url":null,"abstract":"<div><p>Polymer resin-based solid amine are prospective adsorbents used in removing CO<sub>2</sub> from biogas. Two commercial resins with different porous structures, AB-8 and ADS-17, were selected as supports to explore the influence of the support structures on adsorbent performance. It was discovered that macroporous channels greatly boost CO<sub>2</sub> adsorption at higher PEI loadings (≥ 30%), and their influence is more critical than total pore volume or specific surface area, though their impact is minimal at low PEI loadings. ADS-17-40% PEI demonstrated outstanding CO<sub>2</sub> adsorption of 208 mg·g<sup>−1</sup> in its 16th cycle under specific operating conditions. Increasing gas flow rate to 200 mL·min<sup>−1</sup> could promote CO<sub>2</sub> adsorption capacity and initial adsorption rate constant (<i>k</i><sub>0</sub>) calculated by the deactivation model. The highest adsorption capacity was achieved at 55 °C, when the temperature ranged from 25 to 90 °C.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"302 7","pages":"1011 - 1023"},"PeriodicalIF":2.2000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breakthrough analysis on selective adsorption of CO2 from biogas by polyethylenimine-impregnated resins\",\"authors\":\"Haiyan Yang, Yue Gong, Xinzhong Wang, Yuanyuan Chen, Dajiang Yu\",\"doi\":\"10.1007/s00396-024-05234-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Polymer resin-based solid amine are prospective adsorbents used in removing CO<sub>2</sub> from biogas. Two commercial resins with different porous structures, AB-8 and ADS-17, were selected as supports to explore the influence of the support structures on adsorbent performance. It was discovered that macroporous channels greatly boost CO<sub>2</sub> adsorption at higher PEI loadings (≥ 30%), and their influence is more critical than total pore volume or specific surface area, though their impact is minimal at low PEI loadings. ADS-17-40% PEI demonstrated outstanding CO<sub>2</sub> adsorption of 208 mg·g<sup>−1</sup> in its 16th cycle under specific operating conditions. Increasing gas flow rate to 200 mL·min<sup>−1</sup> could promote CO<sub>2</sub> adsorption capacity and initial adsorption rate constant (<i>k</i><sub>0</sub>) calculated by the deactivation model. The highest adsorption capacity was achieved at 55 °C, when the temperature ranged from 25 to 90 °C.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":520,\"journal\":{\"name\":\"Colloid and Polymer Science\",\"volume\":\"302 7\",\"pages\":\"1011 - 1023\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloid and Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00396-024-05234-1\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00396-024-05234-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Breakthrough analysis on selective adsorption of CO2 from biogas by polyethylenimine-impregnated resins
Polymer resin-based solid amine are prospective adsorbents used in removing CO2 from biogas. Two commercial resins with different porous structures, AB-8 and ADS-17, were selected as supports to explore the influence of the support structures on adsorbent performance. It was discovered that macroporous channels greatly boost CO2 adsorption at higher PEI loadings (≥ 30%), and their influence is more critical than total pore volume or specific surface area, though their impact is minimal at low PEI loadings. ADS-17-40% PEI demonstrated outstanding CO2 adsorption of 208 mg·g−1 in its 16th cycle under specific operating conditions. Increasing gas flow rate to 200 mL·min−1 could promote CO2 adsorption capacity and initial adsorption rate constant (k0) calculated by the deactivation model. The highest adsorption capacity was achieved at 55 °C, when the temperature ranged from 25 to 90 °C.
期刊介绍:
Colloid and Polymer Science - a leading international journal of longstanding tradition - is devoted to colloid and polymer science and its interdisciplinary interactions. As such, it responds to a demand which has lost none of its actuality as revealed in the trends of contemporary materials science.